Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca3Co4O9 Thermoelectric Materials by Metallic Cobalt Addition
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Structural Characterization
3.2. Microstructural Evolution
3.3. Electrical Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowe, D.M. Thermoelectric waste heat recovery as a renewable energy source. Int. J. Innov. Energy Syst. 2006, 1, 13–23. [Google Scholar]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018, 19, 836–862. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.M. Modules, Systems, and Applications in Thermoelectrics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–581. ISBN 978-0-429-08825-4. [Google Scholar]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Vining, C.B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85. [Google Scholar] [CrossRef]
- Urban, J.J.; Menon, A.K.; Tian, Z.; Jain, A.; Hippalgaonkar, K. New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more. J. Appl. Phys. 2019, 125, 180902. [Google Scholar] [CrossRef]
- Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano thermoelectric materials. Nano Energy 2013, 2, 190–212. [Google Scholar] [CrossRef]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef]
- Pei, Y.; Wang, H.; Snyder, G.J. Band Engineering of Thermoelectric Materials. Adv. Mater. 2012, 24, 6125–6135. [Google Scholar] [CrossRef]
- Hanus, R.; Agne, M.T.; Rettie, A.J.E.; Chen, Z.; Tan, G.; Chung, D.Y.; Kanatzidis, M.G.; Pei, Y.; Voorhees, P.W.; Snyder, G.J. Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. Adv. Mater. 2019, 31, 1900108. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Hinterding, R.; Feldhoff, A. High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef]
- LeBlanc, S. Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. 2014, 1–2, 26–35. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, R12685–R12687. [Google Scholar] [CrossRef]
- Ji, L. 3-Metal oxide-based thermoelectric materials. In Metal Oxides in Energy Technologies. Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2018; pp. 49–72. ISBN 9780128111673. [Google Scholar]
- Matsubara, I.; Funahashi, R.; Takeuchi, T.; Sodeoka, S.; Shimizu, T.; Ueno, K. Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett. 2001, 78, 3627–3629. [Google Scholar] [CrossRef]
- Fergus, J.W. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Saucke, G.; Populoh, S.; Thiel, P.; Xie, W.; Funahashi, R.; Weidenkaff, A. Compatibility approach for the improvement of oxide thermoelectric converters for industrial heat recovery applications. J. Appl. Phys. 2015, 118, 035106. [Google Scholar] [CrossRef]
- Merkulov, O.V.; Politov, B.V.; Chesnokov, K.Y.; Markov, A.A.; Leonidov, I.A.; Patrakeev, M.V. Fabrication and Testing of a Tubular Thermoelectric Module Based on Oxide Elements. J. Electron. Mater. 2018, 47, 2808–2816. [Google Scholar] [CrossRef]
- Bittner, M.; Kanas, N.; Hinterding, R.; Steinbach, F.; Räthel, J.; Schrade, M.; Wiik, K.; Einarsrud, M.-A.; Feldhoff, A. A comprehensive study on improved power materials for high-temperature thermoelectric generators. J. Power Sour. 2019, 410–411, 143–151. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Aguirre, M.H.; Populoh, S.; Patrício, S.G.; Ferreira, N.M.; Mikhalev, S.M.; Fagg, D.P.; Weidenkaff, A.; Frade, J.R. Designing strontium titanate-based thermoelectrics: Insight into defect chemistry mechanisms. J. Mater. Chem. A 2017, 5, 3909–3922. [Google Scholar] [CrossRef]
- Xiao, X.; Widenmeyer, M.; Mueller, K.; Scavini, M.; Checchia, S.; Castellano, C.; Ma, D.; Yoon, S.; Xie, W.; Starke, U.; et al. A squeeze on the perovskite structure improves the thermoelectric performance of Europium Calcium Titanates. Mater. Today Phys. 2018, 7, 96–105. [Google Scholar] [CrossRef]
- Thébaud, S.; Adessi, C.; Bouzerar, G. Investigating the high-temperature thermoelectric properties of n-type rutile TiO2. Phys. Rev. B 2019, 100, 195202. [Google Scholar] [CrossRef]
- Moos, R.; Hardtl, K.H. Defect Chemistry of Donor-Doped and Undoped Strontium Titanate Ceramics between 1000 °C and 1400 °C. J. Am. Ceram. Soc. 2005, 80, 2549–2562. [Google Scholar] [CrossRef]
- Maignan, A.; Hébert, S.; Pi, L.; Pelloquin, D.; Martin, C.; Michel, C.; Hervieu, M.; Raveau, B. Perovskite manganites and layered cobaltites: Potential materials for thermoelectric applications. Cryst. Eng. 2002, 5, 365–382. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Neves, N.R.; Ferro, M.C.; Torres, M.A.; Madre, M.A.; Costa, F.M.; Sotelo, A.; Kovalevsky, A.V. Growth rate effects on the thermoelectric performance of CaMnO3-based ceramics. J. Eur. Ceram. Soc. 2019, 39, 4184–4188. [Google Scholar] [CrossRef]
- Merkulov, O.V.; Patrakeev, M.V.; Leonidov, I.A. Electrical Transport Properties of Ca1–xBixMnO3–δ. Inorg. Mater. 2019, 55, 1014–1019. [Google Scholar] [CrossRef]
- Sotelo, A.; Depriester, M.; Torres, M.A.; Sahraoui, A.H.; Madre, M.A.; Diez, J.C. Effect of simultaneous K, and Yb substitution for Ca on the microstructural and thermoelectric characteristics of CaMnO3 ceramics. Ceram. Int. 2018, 44, 12697–12701. [Google Scholar] [CrossRef]
- Zakharchuk, K.V.; Widenmeyer, M.; Alikin, D.O.; Xie, W.; Populoh, S.; Mikhalev, S.M.; Tselev, A.; Frade, J.R.; Weidenkaff, A.; Kovalevsky, A.V. A self-forming nanocomposite concept for ZnO-based thermoelectrics. J. Mater. Chem. A 2018, 6, 13386–13396. [Google Scholar] [CrossRef]
- Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 1997, 7, 85–90. [Google Scholar] [CrossRef]
- Ohtaki, M.; Tsubota, T.; Eguchi, K.; Arai, H. High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 1996, 79, 1816–1818. [Google Scholar] [CrossRef]
- Masset, A.C.; Michel, C.; Maignan, A.; Hervieu, M.; Toulemonde, O.; Studer, F.; Raveau, B.; Hejtmanek, J. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 2000, 62, 166–175. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Onoda, M.; Oku, T.; Kikuchi, M.; Ishii, Y.; Ono, Y.; Morii, Y.; Kajitani, T. Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2. J. Phys. Soc. Jpn. 2002, 71, 491–497. [Google Scholar] [CrossRef]
- Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R.A.; Sasaki, T. Superconductivity in two-dimensional CoO2 layers. Nature 2003, 422, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Maignan, A.; Pelloquin, D.; Hebert, S.; Klein, Y.; Hervieu, M. Potencia termoeléctrica de cerámicas basadas en cobaltitas: Optimización mediante sustitución química (Thermoelectric Power in Misfit Cobaltites Ceramics: Optimization by Chemical Substitutions). Bol. Soc. Esp. Ceram. Vidr. 2006, 45, 122–125. [Google Scholar] [CrossRef]
- Constantinescu, G.; Torres, M.A.; Rasekh, S.H.; Bosque, P.; Madre, M.A.; Diez, J.C.; Sotelo, A. Thermoelectric properties in Ca3Co4−xMnxOy ceramics. Adv. Appl. Ceram. 2015, 114, 303–308. [Google Scholar] [CrossRef]
- Butt, S.; Xu, W.; He, W.Q.; Tan, Q.; Ren, G.K.; Lin, Y.; Nan, C.-W. Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9 via spin entropy, defect chemistry and phonon scattering. J. Mater. Chem. A 2014, 2, 19479–19487. [Google Scholar] [CrossRef]
- Boyle, C.; Liang, L.; Chen, Y.; Prucz, J.; Cakmak, E.; Watkins, T.R.; Lara-Curzio, E.; Song, X. Competing dopants grain boundary segregation and resultant seebeck coefficient and power factor enhancement of thermoelectric calcium cobaltite ceramics. Ceram. Int. 2017, 43, 11523–11528. [Google Scholar] [CrossRef]
- Miyazawa, K.; Amaral, F.; Kovalevsky, A.V.; Graça, M.P.F. Hybrid microwave processing of Ca3Co4O9 thermoelectrics. Ceram. Int. 2016, 42, 9482–9487. [Google Scholar] [CrossRef]
- Torres, M.A.; Costa, F.M.; Flahaut, D.; Touati, K.; Rasekh, S.H.; Ferreira, N.M.; Allouche, J.; Depriester, M.; Madre, M.A.; Kovalevsky, A.V.; et al. Significant enhancement of the thermoelectric performance in Ca3Co4O9. Thermoelectric materials through combined strontium substitution and hot-pressing process. J. Eur. Ceram. Soc. 2019, 39, 1186–1192. [Google Scholar] [CrossRef]
- Bresch, S.; Mieller, B.; Schoenauer-Kamin, D.; Moos, R.; Giovanelli, F.; Rabe, T. Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite. J. Appl. Phys. 2019, 126, 075102. [Google Scholar] [CrossRef]
- Bergman, D.J.; Fel, L.G. Enhancement of thermoelectric power factor in composite thermoelectrics. J. Appl. Phys. 1999, 85, 8205–8216. [Google Scholar] [CrossRef]
- Faleev, S.V.; Léonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 2008, 77, 214304. [Google Scholar] [CrossRef]
- Delorme, F.; Diaz-Chao, P.; Guilmeau, E.; Giovannelli, F. Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceram. Int. 2015, 41, 10038–10043. [Google Scholar] [CrossRef]
- Noudem, J.G.; Kenfaui, D.; Chateigner, D.; Gomina, M. Granular and Lamellar Thermoelectric Oxides Consolidated by Spark Plasma Sintering. J. Electron. Mater. 2011, 40, 1100–1106. [Google Scholar] [CrossRef]
- Kenfaui, D.; Bonnefont, G.; Chateigner, D.; Fantozzi, G.; Gomina, M.; Noudem, J.G. Ca3Co4O9 ceramics consolidated by SPS process: Optimisation of mechanical and thermoelectric properties. Mater. Res. Bull. 2010, 45, 1240–1249. [Google Scholar] [CrossRef]
- Madre, M.A.; Costa, F.M.; Ferreira, N.M.; Sotelo, A.; Torres, M.A.; Constantinescu, G.; Rasekh, S.H.; Diez, J.C. Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 2013, 33, 1747–1754. [Google Scholar] [CrossRef]
- Sotelo, A.; Constantinescu, G.; Rasekh, Sh.; Torres, M.A.; Diez, J.C.; Madre, M.A. Improvement of thermoelectric properties of Ca3Co4O9 using soft chemistry synthetic methods. J. Eur. Ceram. Soc. 2012, 32, 2415–2422. [Google Scholar] [CrossRef]
- Bittner, M.; Helmich, L.; Nietschke, F.; Geppert, B.; Oeckler, O.; Feldhoff, A. Porous Ca3Co4O9 with enhanced thermoelectric properties derived from Sol–Gel synthesis. J. Eur. Ceram. Soc. 2017, 37, 3909–3915. [Google Scholar] [CrossRef]
- Królicka, A.K.; Piersa, M.; Mirowska, A.; Michalska, M. Effect of sol-gel and solid-state synthesis techniques on structural, morphological and thermoelectric performance of Ca3Co4O9. Ceram. Int. 2018, 44, 13736–13743. [Google Scholar] [CrossRef]
- Woermann, E.; Muan, A. Phase equilibria in the system CaO-cobalt oxide in air. J. Inorg. Nucl. Chem. 1970, 32, 1455–1459. [Google Scholar] [CrossRef]
- Sedmidubský, D.; Jakeš, V.; Jankovský, O.; Leitner, J.; Sofer, Z.; Hejtmánek, J. Phase equilibria in Ca–Co–O system. J. Solid State Chem. 2012, 194, 199–205. [Google Scholar] [CrossRef]
- Schulz, T.; Töpfer, J. Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method. J. Alloy Compd. 2016, 659, 122–126. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Yaremchenko, A.A.; Populoh, S.; Weidenkaff, A.; Frade, J.R. Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution. J. Appl. Phys. 2013, 113, 053704. [Google Scholar] [CrossRef]
- Patrakeev, M.V.; Mitberg, E.B.; Lakhtin, A.A.; Leonidov, I.A.; Kozhevnikov, V.L.; Kharton, V.V.; Avdeev, M.; Marques, F.M.B. Oxygen Nonstoichiometry, Conductivity, and Seebeck Coefficient of La0.3Sr0.7Fe1−xGaxO2.65+δ Perovskites. J. Solid State Chem. 2002, 167, 203–213. [Google Scholar] [CrossRef]
- Gulbransen, E.A.; Andrew, K.F. The Kinetics of the Oxidation of Cobalt. J. Electrochem. Soc. 1951, 98, 241. [Google Scholar] [CrossRef]
- Büttner, G.; Populoh, S.; Xie, W.; Trottmann, M.; Hertrampf, J.; Döbeli, M.; Karvonen, L.; Yoon, S.; Thiel, P.; Niewa, R.; et al. Thermoelectric properties of [Ca2CoO3−δ][CoO2]1,62 as a function of Co/Ca defects and Co3O4 inclusions. J. Appl. Phys. 2017, 121, 215101. [Google Scholar] [CrossRef]
- Liou, Y.C.; Tsai, W.C.; Lin, W.Y.; Lee, U.R. Synthesis of Ca3Co4O9 and CuAlO2 ceramics of the thermoelectric application using a reaction sintering process. J. Aust. Ceram. Soc. 2008, 44, 17–22. [Google Scholar]
- Kahraman, F.; Madre, M.A.; Rasekh, S.; Salvador, C.; Bosque, P.; Torres, M.A.; Diez, J.C.; Sotelo, A. Enhancement of mechanical and thermoelectric properties of Ca3Co4O9 by Ag addition. J. Eur. Ceram. Soc. 2015, 35, 3835–3841. [Google Scholar] [CrossRef]
- Presečnik, M.; de Boor, J.; Bernik, S. Synthesis of single-phase Ca3Co4O9 ceramics and their processing for a microstructure-enhanced thermoelectric performance. Ceram. Int. 2016, 42, 7315–7327. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lan, J.; Shen, Z.; Liu, Y.; Nan, C.-W.; Li, J.-F. High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramics. Appl. Phys. Lett. 2009, 94, 072107. [Google Scholar] [CrossRef]
- Zhou, Y.; Matsubara, I.; Horii, S.; Takeuchi, T.; Funahashi, R.; Shikano, M.; Shimoyama, J.; Kishio, K.; Shin, W.; Izu, N.; et al. Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics. J. Appl. Phys. 2003, 93, 2653–2658. [Google Scholar] [CrossRef]
- Bordeneuve, H.; Guillemet-Fritsch, S.; Rousset, A.; Schuurman, S.; Poulain, V. Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn3−xCoxO4 sintered classically and by spark plasma sintering (SPS). J. Solid State Chem. 2009, 182, 396–401. [Google Scholar] [CrossRef]
- Broemme, A.D.D. Correlation between thermal expansion and Seebeck coefficient in polycrystalline Co3O4. IEEE Trans. Elect. Insul. 1991, 26, 49–52. [Google Scholar] [CrossRef]
- Maignan, A.; Hébert, S.; Martin, C.; Flahaut, D. One dimensional compounds with large thermoelectric power: Ca3Co2O6 and Ca3CoMO6 with M = Ir4+ and Rh4+. Mater. Sci. Eng. B 2003, 104, 121–125. [Google Scholar] [CrossRef]
- Iwasaki, K.; Yamane, H.; Kubota, S.; Takahashi, J.; Shimada, M. Power factors of Ca3Co2O6 and Ca3Co2O6-based solid solutions. J. Alloy Compd. 2003, 358, 210–215. [Google Scholar] [CrossRef]
Composition | Processing Conditions | Denomination | Phase Composition, wt.%* | Density ρexp, g/cm3 | ρexp/ρth** |
---|---|---|---|---|---|
Ca3Co4O9 | one-stage | 0Co_1ST | Ca3Co4O9(100) | 2.62 | 0.56 |
Ca3Co4O9 +3% vol. Co | one-stage | 3Co_1ST | Ca3Co4O9(94); Co3O4(6) | 2.90 | 0.61 |
Ca3Co4O9 + 6% vol. Co | one-stage | 6Co_1ST | Ca3Co4O9(85); Co3O4(15) | 2.85 | 0.59 |
Ca3Co4O9 + 9% vol. Co | one-stage | 9Co_1ST | Ca3Co4O9(80); Co3O4(20) | 2.81 | 0.57 |
Ca3Co4O9 | two-stage | 0Co_2ST | Ca3Co4O9(100) | 3.74 | 0.80 |
Ca3Co4O9 + 3% vol. Co | two-stage | 3Co_2ST | Ca3Co4O9(94); Ca3Co2O6(4); Co3O4(2) | 4.12 | - |
Ca3Co4O9 + 6% vol. Co | two-stage | 6Co_2ST | Ca3Co4O9(70); Ca3Co2O6(23); Co3O4(7) | 4.35 | - |
Ca3Co4O9 + 9% vol. Co | two-stage | 9Co_2ST | Ca3Co4O9(40); Ca3Co2O6(40); Co3O4(20) | 4.49 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinescu, G.; Sarabando, A.R.; Rasekh, S.; Lopes, D.; Sergiienko, S.; Amirkhizi, P.; Frade, J.R.; Kovalevsky, A.V. Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca3Co4O9 Thermoelectric Materials by Metallic Cobalt Addition. Materials 2020, 13, 1060. https://doi.org/10.3390/ma13051060
Constantinescu G, Sarabando AR, Rasekh S, Lopes D, Sergiienko S, Amirkhizi P, Frade JR, Kovalevsky AV. Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca3Co4O9 Thermoelectric Materials by Metallic Cobalt Addition. Materials. 2020; 13(5):1060. https://doi.org/10.3390/ma13051060
Chicago/Turabian StyleConstantinescu, Gabriel, Artur R. Sarabando, Shahed Rasekh, Diogo Lopes, Sergii Sergiienko, Parisa Amirkhizi, Jorge R. Frade, and Andrei V. Kovalevsky. 2020. "Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca3Co4O9 Thermoelectric Materials by Metallic Cobalt Addition" Materials 13, no. 5: 1060. https://doi.org/10.3390/ma13051060
APA StyleConstantinescu, G., Sarabando, A. R., Rasekh, S., Lopes, D., Sergiienko, S., Amirkhizi, P., Frade, J. R., & Kovalevsky, A. V. (2020). Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca3Co4O9 Thermoelectric Materials by Metallic Cobalt Addition. Materials, 13(5), 1060. https://doi.org/10.3390/ma13051060