Electric-Field-Induced Phase Transformation and Frequency-Dependent Behavior of Bismuth Sodium Titanate–Barium Titanate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Processing and Preparation
2.2. Diffraction Experiments
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jo, W.; Daniels, J.; Jones, J.L.; Tan, X.; Thomas, P.; Damjanovic, D.; Rödel, J. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 2011, 109, 014110. [Google Scholar] [CrossRef] [Green Version]
- Piezoelectric Ceramic, Polymer and Ceramic/Polymer Composite Devices-Types, Materials, Applications, New Developments, Industry Structure and Global Markets. Innov Res Prod Inc Stamford. 2014. Available online: www.innoresearch.net (accessed on 23 June 2019).
- Jo, W.; Dittmer, R.; Acosta, M.; Zang, J.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications—Status and perspective. J. Electroceramics 2012, 29, 71–93. [Google Scholar] [CrossRef]
- Acosta, M. Strain Mechanisms in Lead-Free Ferroelectrics for Actuators; Springer Theses; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- European Parliament. Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS); European Parliament: Brussels, Belgium, 2011; Volume 54, pp. 88–110. [Google Scholar]
- Rödel, J.; Li, J.-F. Lead-free piezoceramics: Status and perspectives. MRS Bull. 2018, 43, 576–580. [Google Scholar] [CrossRef] [Green Version]
- Rödel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.-M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Takenaka, T.; Maruyama, K.-I.; Sakata, K. (Bi1/2Na1/2)TiO3-BaTiO3System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 1991, 30, 2236–2239. [Google Scholar] [CrossRef]
- Hinterstein, M.; Schmitt, L.; Hoelzel, M.; Jo, W.; Rödel, J.; Kleebe, H.-J.; Hoffman, M. Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics. Appl. Phys. Lett. 2015, 106, 222904. [Google Scholar] [CrossRef] [Green Version]
- Vakhrushev, S.; Isupov, V.A.; Kvyatkovsky, B.E.; Okuneva, N.M.; Pronin, I.P.; Smolensky, G.A.; Syrnikov, P.P. Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics 1985, 63, 153–160. [Google Scholar] [CrossRef]
- Kreisel, J.; Bouvier, P.; Dkhil, B.; Thomas, P.; Glazer, A.M.; Welberry, T.R.; Chaabane, B.; Mezouar, M. High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na1/2Bi1/2TiO3. Phys. Rev. B 2003, 68, 014113. [Google Scholar] [CrossRef]
- Hinterstein, M.; Knapp, M.; Hölzel, M.; Jo, W.; Cervellino, A.; Ehrenberg, H.; Fuess, H. Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. J. Appl. Crystallogr. 2010, 43, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- Cross, L.E. Relaxor ferroelectrics. Ferroelectrics 1987, 76, 241–267. [Google Scholar] [CrossRef]
- Heywang, W.; Lubitz, K.; Wersing, W. Piezoelectricity; Springer: Berlin/Heidelberg, Germany, 2008; Volume 114. [Google Scholar] [CrossRef]
- Lalitha, K.V.; Koruza, J.; Rödel, J. Propensity for spontaneous relaxor-ferroelectric transition in quenched (Na1/2Bi1/2)TiO3-BaTiO3 compositions. Appl. Phys. Lett. 2018, 113, 252902. [Google Scholar] [CrossRef]
- Ahn, C.W.; Hong, C.-H.; Choi, B.-Y.; Kim, H.-P.; Han, H.-S.; Hwang, Y.; Jo, W.; Wang, K.; Li, J.-F.; Lee, J.-S.; et al. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J. Korean Phys. Soc. 2016, 68, 1481–1494. [Google Scholar] [CrossRef]
- Daniels, J.; Jo, W.; Rödel, J.; Jones, J.L. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic. Appl. Phys. Lett. 2009, 95, 032904. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Dviwedi, A. Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3: 0≤x≤0.10. Solid State Commun. 2005, 135, 394–399. [Google Scholar] [CrossRef]
- Jo, W.; Schaab, S.; Sapper, E.; Schmitt, L.; Kleebe, H.-J.; Bell, A.; Rödel, J. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J. Appl. Phys. 2011, 110, 74106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Luo, J.; Sun, W.; Li, J.-F. Temperature and composition dependent phase transitions of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 thin films. Phys. Chem. Chem. Phys. 2017, 19, 19992–19997. [Google Scholar] [CrossRef]
- Ma, C.; Tan, X. In situ Transmission Electron Microscopy Study on the Phase Transitions in Lead-Free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 Ceramics. J. Am. Ceram. Soc. 2011, 94, 4040–4044. [Google Scholar] [CrossRef] [Green Version]
- Groszewicz, P.B.; Breitzke, H.; Dittmer, R.; Sapper, E.; Jo, W.; Buntkowsky, G.; Rödel, J. Nanoscale phase quantification in lead-free (Bi1/2Na1/2)TiO3−BaTiO3 relaxor ferroelectrics by means of Na23 NMR. Phys. Rev. B 2014, 90. [Google Scholar] [CrossRef] [Green Version]
- Ditas, P.; Hennig, E.; Kynast, A.; Gmbh, P.I.C. Lead-Free Piezoceramic Materials for Ultrasonic Applications. Sens. Messsyst. 2014, 17, 1–4. [Google Scholar]
- Kounga, A.B.; Granzow, T.; Aulbach, E.; Hinterstein, M.; Rödel, J. High-temperature poling of ferroelectrics. J. Appl. Phys. 2008, 104, 24116. [Google Scholar] [CrossRef]
- Senousy, M.S.; Rajapakse, N.; Mumford, D.; Gadala, M.S. Self-heat generation in piezoelectric stack actuators used in fuel injectors. Smart Mater. Struct. 2009, 18, 45008. [Google Scholar] [CrossRef]
- Dittmer, R.; Jo, W.; Aulbach, E.; Granzow, T.; Rödel, J. Frequency-dependence of large-signal properties in lead-free piezoceramics. J. Appl. Phys. 2012, 112, 014101. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.; Jo, W.; Rödel, J. Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2 Na1/2 TiO3 -0.25SrTiO3 Lead-Free Incipient Piezoceramic. J. Am. Ceram. Soc. 2014, 97, 1937–1943. [Google Scholar] [CrossRef]
- Suaste-Gomez, E. (Ed.) Piezoelectric Ceramics; InTech: Rijeka, Croatia, 2010. [Google Scholar]
- Ochi, A.; Takahashi, S.; Tagami, S. Temperature Characteristics for Multilayer Piezoelectric Ceramic Actuator. Jpn. J. Appl. Phys. 1985, 24, 209. [Google Scholar] [CrossRef]
- Uchino, K.; Hirose, S. Loss Mechanisms in Piezoelectrics: How to measure differenct losses separately. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 307–321. [Google Scholar] [CrossRef]
- Chen, X.; Dong, X.; Zhang, H.; Cao, F.; Wang, G.; Gu, Y.; He, H.; Liu, Y. Frequency Dependence of Coercive Field in Soft Pb(Zr1−xTix)O3 (0.20 ≤ x ≤ 0.60) Bulk Ceramics. J. Am. Ceram. Soc. 2011, 94, 4165–4168. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; Auciello, O. Calculation of frequency-dependent coercive field based on the investigation of intrinsic switching kinetics of strained Pb(Zr0.2Ti0.8)O3 thin films. J. Phys. D Appl. Phys. 2011, 44, 105404. [Google Scholar] [CrossRef]
- Hinterstein, M.; Lee, K.-Y.; Esslinger, S.; Glaum, J.; Studer, A.J.; Hoffman, M.; Hoffmann, M.J. Determining fundamental properties from diffraction: Electric field induced strain and piezoelectric coefficient. Phys. Rev. B 2019, 99, 174107. [Google Scholar] [CrossRef]
- Li, M.; Pietrowski, M.J.; De Souza, R.A.; Zhang, H.; Reaney, I.; Cook, S.N.; Kilner, J.; Sinclair, D.C. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 2013, 13, 31–35. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Cook, S.N.; Li, L.; Kilner, J.; Reaney, I.; Sinclair, D.C. Dramatic Influence of A-Site Nonstoichiometry on the Electrical Conductivity and Conduction Mechanisms in the Perovskite Oxide Na0.5Bi0.5TiO3. Chem. Mater. 2015, 27, 629–634. [Google Scholar] [CrossRef]
- Tung, P.; Daniels, J.E.; Major, M.; Schneider, D.; Chen, R.; Luo, H.; Granzow, T. Achieving large electric-field-induced strain in lead-free piezoelectrics. Mater. Res. Lett. 2019, 7, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Kling, J.; Tan, X.; Jo, W.; Kleebe, H.-J.; Fuess, H.; Rödel, J. In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi-Based Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2010, 93, 2452–2455. [Google Scholar] [CrossRef]
- Shi, X.; Kumar, N.; Hoffman, M. Electric field–temperature phase diagrams for (Bi1/2Na1/2)TiO3–BaTiO3–(K1/2Na1/2)NbO3 relaxor ceramics. J. Mater. Chem. C 2018, 6, 12224–12233. [Google Scholar] [CrossRef]
- Herklotz, M.; Scheiba, F.; Hinterstein, M.; Nikolowski, K.; Knapp, M.; Dippel, A.-C.; Giebeler, L.; Eckert, J.; Ehrenberg, H. Advances inin situpowder diffraction of battery materials: A case study of the new beamline P02.1 at DESY, Hamburg. J. Appl. Crystallogr. 2013, 46, 1117–1127. [Google Scholar] [CrossRef]
- Dippel, A.-C.; Liermann, H.-P.; Delitz, J.T.; Walter, P.; Schulte-Schrepping, H.; Seeck, O.H.; Franz, H. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. J. Synchrotron Radiat. 2015, 22, 675–687. [Google Scholar] [CrossRef]
- Schökel, A.; Etter, M.; Berghäuser, A.; Schmid, S.; Horst, A.; Lindackers, D.; Hinterstein, M.; Knapp, M.; Ehrenberg, H. Multi Analyser Detector (MAD) for High Resolution and High Energy Powder X-ray Diffraction. J. Synchrotron Radiat. 2020. submitted. [Google Scholar]
- Choe, H.; Gorfman, S.; Hinterstein, M.; Ziolkowski, M.; Knapp, M.; Heidbrink, S.; Vogt, M.; Bednarcik, J.; Berghäuser, A.; Ehrenberg, H.; et al. Combining high time and angular resolutions: Time-resolved X-ray powder diffraction using a multi-channel analyser detector. J. Appl. Crystallogr. 2015, 48, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Choe, H.; Gorfman, S.; Heidbrink, S.; Pietsch, U.; Vogt, M.; Winter, J.; Ziolkowski, M. Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments. IEEE Trans. Nucl. Sci. 2017, 64, 1320–1326. [Google Scholar] [CrossRef]
- Vaughan, G.B.M.; Baker, R.; Barret, R.; Bonnefoy, J.; Buslaps, T.; Checchia, S.; Duran, D.; Fihman, F.; Got, P.; Kieffer, J.; et al. ID15A at the ESRF—A beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Synchrotron Radiat. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Matthies, S.; Lutteroti, L.; Wenk, H.-R. Advances in Texture Analysis from Diffraction Spectra. J. Appl. Crystallogr. 1997, 30, 31–42. [Google Scholar] [CrossRef]
- Höfling, M.; Steiner, S.; Hoang, A.-P.; Seo, I.-T.; Frömling, T. Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: Paving the way for excellent high temperature capacitors. J. Mater. Chem. C 2018, 6, 4769–4776. [Google Scholar] [CrossRef]
- Ma, C.; Tan, X.; Roth, M. Domain structure-dielectric property relationship in lead-free (1 – x)(Bi½Na1/2) TiO3 xBaTiO3 ceramics. J. Appl. Phys. 2010, 108, 104105. [Google Scholar] [CrossRef] [Green Version]
- Frömling, T.; Steiner, S.; Ayrikyan, A.; Bremecker, D.; Dürrschnabel, M.; Molina-Luna, L.; Kleebe, H.-J.; Hutter, H.; Webber, K.G.; Acosta, M. Designing properties of (Na1/2Bix)TiO3-based materials through A-site non-stoichiometry. J. Mater. Chem. C 2018, 6, 738–744. [Google Scholar] [CrossRef]
- Yang, F.; Wu, P.; Sinclair, D.C. Suppression of electrical conductivity and switching of conduction mechanisms in ‘stoichiometric’ (Na0.5Bi0.5TiO3)1−x(BiAlO3)x (0 ≤ x ≤ 0.08) solid solutions. J. Mater. Chem. C 2017, 5, 7243–7252. [Google Scholar] [CrossRef] [Green Version]
- Pramanick, A.; Damjanovic, D.; Daniels, J.; Nino, J.C.; Jones, J.L. Origins of Electro-Mechanical Coupling in Polycrystalline Ferroelectrics During Subcoercive Electrical Loading. J. Am. Ceram. Soc. 2011, 94, 293–309. [Google Scholar] [CrossRef]
- Hall, D.; Steuwer, A.; Cherdhirunkorn, B.; Mori, T.; Withers, P.J. A high energy synchrotron x-ray study of crystallographic texture and lattice strain in soft lead zirconate titanate ceramics. J. Appl. Phys. 2004, 96, 4245. [Google Scholar] [CrossRef]
- Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, P.; Knapp, M.; Glaum, J.; Fuess, H. Structural Description of the Macroscopic Piezo- and Ferroelectric Properties of Lead Zirconate Titanate. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef]
- Acosta, M.; Schmitt, L.; Cazorla, C.; Studer, A.; Zintler, A.; Glaum, J.; Kleebe, H.-J.; Donner, W.; Hoffman, M.; Rödel, J.; et al. Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics. Sci. Rep. 2016, 6, 28742. [Google Scholar] [CrossRef] [Green Version]
- Ronkanen, P.; Kallio, P.; Vilkko, M.; Koivo, H. Self heating of piezoelectric actuators: Measurement and compensation. In Proceedings of the Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004, Nagoya, Japan, 31 October–3 November 2004. [Google Scholar]
- Weyland, F.; Acosta, M.; Vögler, M.; Ehara, Y.; Rödel, J.; Novak, N. Electric field–temperature phase diagram of sodium bismuth titanate-based relaxor ferroelectrics. J. Mater. Sci. 2018, 53, 1–8. [Google Scholar] [CrossRef]
- Novak, N.; Pirc, R.; Kutnjak, Z. Diffuse critical point in PLZT ceramics. Europhys. Lett. 2013, 102, 17003. [Google Scholar] [CrossRef]
- Vodopivec, B.; Filipič, C.; Levstik, A.; Holc, J.; Kutnjak, Z. E–T phase diagram of the 6.5/65/35 PLZT incipient ferroelectric. J. Eur. Ceram. Soc. 2004, 24, 1561–1564. [Google Scholar] [CrossRef]
- Ehara, Y.; Novak, N.; Ayrikyan, A.; Geiger, P.T.; Webber, K.G. Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 ceramics. J. Appl. Phys. 2016, 120, 174103. [Google Scholar] [CrossRef]
- Zhou, D.; Kamlah, M. Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Mater. 2006, 54, 1389–1396. [Google Scholar] [CrossRef]
Element | Bi | Na | Ba | Ti | Zr |
---|---|---|---|---|---|
ICP Data (wt. %) | 42.6(1) | 4.12(3) | 7.33(4) | 20.89(5) | 0.1115(5) |
Element Amount (mol) | 0.467(2) | 0.411(3) | 0.122(1) | 1 | 0.00280(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-Y.; Shi, X.; Kumar, N.; Hoffman, M.; Etter, M.; Checchia, S.; Winter, J.; Lemos da Silva, L.; Seifert, D.; Hinterstein, M. Electric-Field-Induced Phase Transformation and Frequency-Dependent Behavior of Bismuth Sodium Titanate–Barium Titanate. Materials 2020, 13, 1054. https://doi.org/10.3390/ma13051054
Lee K-Y, Shi X, Kumar N, Hoffman M, Etter M, Checchia S, Winter J, Lemos da Silva L, Seifert D, Hinterstein M. Electric-Field-Induced Phase Transformation and Frequency-Dependent Behavior of Bismuth Sodium Titanate–Barium Titanate. Materials. 2020; 13(5):1054. https://doi.org/10.3390/ma13051054
Chicago/Turabian StyleLee, Kai-Yang, Xi Shi, Nitish Kumar, Mark Hoffman, Martin Etter, Stefano Checchia, Jens Winter, Lucas Lemos da Silva, Daniela Seifert, and Manuel Hinterstein. 2020. "Electric-Field-Induced Phase Transformation and Frequency-Dependent Behavior of Bismuth Sodium Titanate–Barium Titanate" Materials 13, no. 5: 1054. https://doi.org/10.3390/ma13051054
APA StyleLee, K.-Y., Shi, X., Kumar, N., Hoffman, M., Etter, M., Checchia, S., Winter, J., Lemos da Silva, L., Seifert, D., & Hinterstein, M. (2020). Electric-Field-Induced Phase Transformation and Frequency-Dependent Behavior of Bismuth Sodium Titanate–Barium Titanate. Materials, 13(5), 1054. https://doi.org/10.3390/ma13051054