Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterization
3.2. Perovskite Device Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Holliman, P.J.; Davies, M.L.; Connell, A.; Carnie, M.J.; Watson, T.M. Rapid, low temperature processing of dye sensitized solar cells. In Functional Materials for Energy Applications; Kilner, J.A., Skinner, S.J., Irvine, S.J.C., Edwards, P.P., Eds.; Woodhead Publ.: Cambridge, UK, 2012. [Google Scholar]
- Holliman, P.J.; Connell, A.; Jones, E.W.; Ghosh, S.; Furnell, L.; Hobbs, R.J. Solvent issues during processing and device lifetime for perovskite solar cells. Mater. Res. Innov. 2015, 19, 508–511. [Google Scholar] [CrossRef]
- The National Renewable Energy Laboratory. Available online: https://www.nrel.gov/pv/cell-efficiency.htmL (accessed on 15 January 2020).
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.S.C.; Bett, A.J.; Winkler, K.; Hinsch, A.; Lee, S.; Mastroianni, S.; Mundt, L.E.; Mundus, M.; Würfel, U.; Glunz, S.W.; et al. Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold. ACS Appl. Mater. Interfaces 2017, 9, 30567–30574. [Google Scholar] [CrossRef]
- Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Arquer, F.P.G.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Giacomo, F.D.; Zardetto, V.; Lucarelli, G.; Cinà, L.; Carlo, A.D.; Creatore, M.; Brown, T.M. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy 2016, 30, 460–469. [Google Scholar] [CrossRef]
- Holliman, P.J.; Connell, A.; Davies, M.; Carnie, M.; Bryant, D.; Jones, E.W. Low temperature sintering of aqueous TiO2 colloids for flexible, co-sensitized dye-sensitized solar cells. Mater. Lett. 2019, 236, 289–291. [Google Scholar] [CrossRef]
- Holliman, P.J.; Muslem, D.K.; Jones, E.W.; Connell, A.; Davies, M.L.; Charbonneau, C.; Carnie, M.J.; Worsley, D.A. Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 11134–11143. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, L.-L.; Wang, L.-Y.; Dai, S.-M.; Xing, Z.; Zhan, X.-X.; Lu, X.-Z.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Cerium oxide standing out as electron transport layer for efficient and stable perovskite solar cells processed in low temperature. J. Mater. Chem. A 2017, 5, 1706–1712. [Google Scholar] [CrossRef]
- Hu, T.; Xiao, S.; Yang, H.; Chen, L.; Chen, Y. Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells. Chem. Commun. 2018, 54, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, B.; Liu, B.; Sun, S. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv. 2017, 7, 26226–26242. [Google Scholar] [CrossRef]
- Ye, Z.; Giraudon, J.-M.; Geyter, N.D.; Morent, R.; Lamonier, J.-F. The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement. Catalysts 2018, 8, 91. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.; Jeon, P.; Jeong, K.; Yi, Y.; Kim, T.G.; Jeong, W.-K.; Lee, J.W. Highly enhanced electron injection in organic light-emitting diodes with an n-type semiconducting MnO2 layer. Org. Elec. 2012, 13, 820–825. [Google Scholar] [CrossRef]
- Prasetio, A.; Habieb, A.M.; Alkian, I.; Arifin, Z.; Widiyandari, H. Dye-sensitized solar cell based on TiO2/MnO2 composite film as working electrode. IOP Conf. Series: J. Physics: Conf. Series. 2017, 877, 012005. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mobin, S.M. Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications. Electrochim. Acta 2017, 252, 549–557. [Google Scholar] [CrossRef]
- Heo, J.H.; Song, D.H.; Im, S.H. Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process. Adv. Mater. 2014, 26, 8179–8183. [Google Scholar] [CrossRef]
- Liu, Q.; Ji, S.; Yang, J.; Wang, H.; Pollet, B.G.; Wang, R. Enhanced cycleability of amorphous MnO2 by covering on α-MnO2 needles in an electrochemical capacitor. Materials 2017, 10, 988. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyaska, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Sarwar, S.; Mehran, T.M. Current status of electron transport layers in perovskite solar cells: Materials and priorities. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, opportunities and challenges in perovskite solar cells: A critical review. J. Photochem. Photobiol. C. 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Jones, E.W.; Holliman, P.J.; Bowen, L.; Connell, A.; Kershaw, C.; Meza-Rojas, D.E. Hybrid Al2O3-CH3NH3PbI3 Perovskites towards Avoiding Toxic Solvents. Materials 2020, 13, 243. [Google Scholar] [CrossRef] [PubMed]
Sample | PCE (%) | Voc (V) | Jsc (mA cm−2) | FF |
---|---|---|---|---|
TiO2 oc-sc | 3.8 | 0.95 | 8.91 | 0.45 |
TiO2 sc-oc | 2.9 | 0.81 | 7.45 | 0.47 |
CeO2 oc-sc | 0.9 | 0.91 | 2.55 | 0.37 |
CeO2 sc-oc | 0.8 | 0.87 | 2.67 | 0.34 |
MnO2 oc-sc | 3.9 | 1.34 | 7.50 | 0.38 |
MnO2 sc-oc | 2.6 | 1.26 | 5.89 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holliman, P.J.; Connell, A.; Jones, E.W.; Kershaw, C.P. Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells. Materials 2020, 13, 949. https://doi.org/10.3390/ma13040949
Holliman PJ, Connell A, Jones EW, Kershaw CP. Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells. Materials. 2020; 13(4):949. https://doi.org/10.3390/ma13040949
Chicago/Turabian StyleHolliman, Peter J., Arthur Connell, Eurig W. Jones, and Christopher P. Kershaw. 2020. "Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells" Materials 13, no. 4: 949. https://doi.org/10.3390/ma13040949
APA StyleHolliman, P. J., Connell, A., Jones, E. W., & Kershaw, C. P. (2020). Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells. Materials, 13(4), 949. https://doi.org/10.3390/ma13040949