

SUPPLEMENTARY Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells

Peter J. Holliman *, Arthur Connell, Eurig W. Jones and Christopher P. Kershaw

College of Engineering, Bay Campus, Swansea University, SA1 8EN Swansea, UK; <u>arthur.connell@swansea.ac.uk</u> (A.C.); <u>eurig.w.jones@swansea.ac.uk</u> (E.J.); <u>c.p.kershaw@swansea.ac.uk</u> (C.P.K.)

* Correspondence: p.j.holliman@swansea.ac.uk

We have also run ATR to confirm the absence of organic residues on the sintered metal oxide scaffolds (please see Figure S2 below).

Figure S2. ATR-infrared spectra of 500 °C sintered films of (**a**) TiO₂ scaffold, (**b**) CeO₂ scaffold, and (**c**) MnO₂ scaffold.

Figure S3. XRD data of CH₃NH₃PbBr₃ films deposited on CeO₂ scaffold; (top) as deposited and (bottom) after 24 h exposed to UV and 70% relative humidity.

Figure S4. XRD data of CH₃NH₃PbBr₃ films deposited on MnO₂ scaffold; (top) as deposited and (bottom) after 24 h exposed to UV and 70% relative humidity.

Figure S5. XRD data of CH₃NH₃PbBr₃ films deposited on (top) TiO₂ scaffold, (middle) CeO₂ scaffold, and (bottom) MnO₂ scaffold after exposure to ambient conditions for 1 week.