Next Article in Journal
Study on CO2 Capture Characteristics and Kinetics of Modified Potassium-Based Adsorbents
Previous Article in Journal
The Distribution of Li Ions in the Oxide Film Formed on Zircaloy-4 Corroded in Lithiated Water at 633 K
Previous Article in Special Issue
Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective
Open AccessArticle

Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities

1
Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India
2
Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, UAE
3
Institute of Sciences of Food Productions, CNR-ISPA, 73100 Lecce, Italy
*
Authors to whom correspondence should be addressed.
Materials 2020, 13(4), 876; https://doi.org/10.3390/ma13040876
Received: 20 December 2019 / Revised: 17 January 2020 / Accepted: 12 February 2020 / Published: 15 February 2020
(This article belongs to the Special Issue Antimicrobial Nanomaterials)
The employment of plant extracts in the synthesis of metal nanoparticles is a very attractive approach in the field of green synthesis. To benefit from the potential synergy between the biological activities of the Moringa oleifera and metallic bismuth, our study aimed to achieve a green synthesis of phytochemical encapsulated bismuth nanoparticles using a hydroalcoholic extract of M. oleifera leaves. The total phenolic content in the M. oleifera leaves extract used was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The physical properties of the synthesized bismuth nanoparticles were characterized using UV-Vis spectrophotometer, FT-IR spectrometer, TEM, SEM, and XRD. The size of the synthesized bismuth nanoparticles is in the range of 40.4–57.8 nm with amorphous morphology. Using DPPH and phosphomolybdate assays, our findings revealed that the M. oleifera leaves extract and the synthesized bismuth nanoparticles possess antioxidant properties. Using resazurin microtiter assay, we also demonstrate that the M. oleifera leaves extract and the synthesized bismuth nanoparticles exert potent anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (estimated MIC values for the extract: 500, 250, 250, and 250 µg/mL; estimated MIC values for the bismuth nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized bismuth nanoparticles display relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (estimated MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; estimated MIC values for the bismuth nanoparticles: 250, 250, 62.5, and 62.5 µg/mL, respectively). Thus, green synthesis of bismuth nanoparticles using M. oleifera leaves extract was successful, showing a positive antioxidant, anti-bacterial, and anti-fungal activity. Therefore, the synthesized bismuth nanoparticles can potentially be employed in the alleviation of symptoms associated with oxidative stress and in the topic treatment of Candida infections. View Full-Text
Keywords: Moringa oleifera; bismuth nanoparticles; polyphenolics; anti-bacterial; anti-fungal; antioxidant Moringa oleifera; bismuth nanoparticles; polyphenolics; anti-bacterial; anti-fungal; antioxidant
Show Figures

Figure 1

MDPI and ACS Style

Das, P.E.; Majdalawieh, A.F.; Abu-Yousef, I.A.; Narasimhan, S.; Poltronieri, P. Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities. Materials 2020, 13, 876.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop