Spin-Glass Transitions in Zn1-xFexO Nanoparticles
Abstract
:1. Introduction
2. Experimental Details
3. Results
3.1. X-ray Diffractometry
3.2. Chemical Analysis and Morphological Characterization
3.3. Optical Characterization
3.4. Magnetic Characterization
3.5. Mössbauer Spectroscopy
4. Discussion
5. Conclusions
- -
- The process of lyophilization of the aqueous solution of iron and zinc acetates, followed by an appropriate heat treatment of the lyophilized material, resulted in Zn1-xFexO nanoparticles, which are monophasic for x ≤ 0.05;
- -
- Applying this synthesis routine, Fe-doped ZnO induced a morphological change in the crystallites, from the ZnO nanorods to the Zn0.95Fe0.05O round polyhedral;
- -
- The iron cations are trivalent and substitutional for zinc in the wurtzite matrix and can be divided into two groups: isolated iron atoms and those with one or more neighboring iron atoms.
- -
- The band gap of the semiconductor decreases while a spin-polarized band situated close to the Fermi level emerges in the semiconductor band structure, with iron doping;
- -
- The x ≤ 0.05 Zn1-xFexO samples have no magnetic order at RT, but undergo a transition from the PM state to an SG-like state as the sample temperature decreases; this magnetic transition passed through, at least, three different magnetic regimes.
- -
- The magnetic frustration of localized iron moments at low temperatures is a result of the competition between indirect and direct superexchange interactions between the localized iron moments.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikant, V.; Clarke, D.R. On the optical band gap of zinc oxide. J. Appl. Phys. 1998, 83, 5447–5451. [Google Scholar] [CrossRef]
- Wilamowski, Z.; Werpachowska, A.M. Spintronics in semiconductors. Mater. Sci Pol. 2006, 24, 803–808. [Google Scholar]
- Dietl, T. Ferromagnetic semiconductors. Semicond. Sci. Technol. 2002, 17, 377–392. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, 829–858. [Google Scholar] [CrossRef]
- Mihalache, V.; Cernea, M.; Pasuk, I. Relationship between ferromagnetism and, structure and morphology in un-doped ZnO and Fe-doped ZnO powders prepared by hydrothermal route. Curr. Appl. Phys. 2017, 17, 1127–1135. [Google Scholar] [CrossRef]
- Carvalho, M.D.; Ferreira, L.P.; Borges, R.P.; Godinho, M. Investigation of the iron site localization in doped ZnO. J. Solid State Chem. 2012, 185, 160–165. [Google Scholar] [CrossRef]
- Wang, J.; Wan, J.; Chen, K. Facile synthesis of superparamagnetic Fe-doped ZnO nanoparticles in liquid polyols. Mater. Lett. 2010, 64, 2373–2375. [Google Scholar] [CrossRef]
- Liu, B.; You, Y.; Zhang, H.; Wu, H.; Jin, J.; Liu, H. Synthesis of ZnO nano-powders via a novel PVA-assisted freeze-drying process. RSC Adv. 2016, 6, 110349–110355. [Google Scholar] [CrossRef]
- de Souza, A.O.; Ivashita, F.F.; Biondo, V.; Paesano, A.; Mosca, D.H. Structural and magnetic properties of iron doped ZrO2. J. Alloys Compd. 2016, 680, 701–710. [Google Scholar] [CrossRef]
- de Souza, A.O.; Biondo, V.; Sarvezuk PW, C.; Bellini, J.V.; Anizelli, P.R.; Zaia, D.A.; Paesano, A., Jr. Síntese, liofilização e caracterização de acetato de 57Fe(III). Quim. Nova 2014, 37, 1132–1137. [Google Scholar]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Kruse, B. Revised Kubelka Munk theory. I. Theory and application. J. Opt. Soc. Am. 2004, 21, 1933–1941. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, Y.R. Optical investigation of Zn1-xFexO films grown on Al2O3(0001) by radio-frequency sputtering. J. Appl. Phys. 2004, 96, 4150–4153. [Google Scholar] [CrossRef]
- Beltrán, J.J.; Barrero, C.A.; Punnoose, A. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Codoped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C 2014, 118, 13203–13217. [Google Scholar] [CrossRef]
- Mydosh, J.A. Disordered magnetism and spin glasses. J. Magn. Magn. Mater. 1996, 157–158, 606–610. [Google Scholar] [CrossRef]
- Ma, S.K. Modern Theory of Critical Phenomena, 1st ed.; Taylor & Francis Group: New York, NY, USA, 2001. [Google Scholar]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; Wiley-IEEE: Piscataway, NJ, USA, 2008. [Google Scholar]
- Nishioka, T.; Tabata, Y.; Taniguchi, T. Canonical Spin Glass Behavior in Ce2AgIn3. J. Phys. Soc. Jpn. 2000, 69, 1012–1015. [Google Scholar] [CrossRef]
- Binder, K.; Young, A.P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 1986, 58, 801–976. [Google Scholar] [CrossRef]
- Silva Tupan, L.F.; Valerio-Cuadros, M.I.; Oliveira, A.A.; de Souza, A.O.; Barco, R.; Ivashita, F.F.; Caetano, E.P.; Saitovitch, E.B.; Paesano, A., Jr. Structural and magnetic characterization of (Zn1-x-yFexCoy)O. Hyp. Interact. 2019, 240, 18–23. [Google Scholar]
- Beltrán, J.J.; Barrero, C.A.; Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15284–15296. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.A.; Senoussi, S.; Varret, F.; Teillet, J.; Hamzić, A. Competing Ferromagnetic and Spin-glass Order in a AuFe Alloy. Phys. Rev. Lett. 1983, 50, 1615–1618. [Google Scholar] [CrossRef] [Green Version]
- Zamora, L.E.; Alcázar, G.P.; Bohórquez, A.; Marco, J.F. Magnetic Phase Diagram of the FexMn0.7-xAl0.3 alloys series obtained by Mössbauer spectroscopy. Hyp. Interac. 1997, 110, 177–182. [Google Scholar] [CrossRef]
- Fu-Chun, Z.; Wei-Hu, Z.; Jun-Tang, D.; Zhi-Yong, Z. First-Principles Study of Fe-Doped ZnO Nanowires. Chin. Phys. Lett. 2011, 28, 126102. [Google Scholar]
- Shaoqiang, G.; Qingyu, H.; Zhenchao, X.; Chunwang, Z. First principles study of magneto-optical properties of Fe-doped ZnO. Phys. B 2016, 503, 93–99. [Google Scholar] [CrossRef]
Sample | a (Ȧ) | c (Ȧ) | V (Ȧ3) | S | D (nm) | xexp (%) | Eg (eV) |
---|---|---|---|---|---|---|---|
ZnO | 3.2499(2) | 5.2067(3) | 47.63 (5) | 1.86 | 40(2) | - | 3.243(2) |
Zn0.99Fe0.01O | 3.2486(1) | 5.2101(1) | 47.62 (1) | 2.44 | 25(1) | 0.90 | 3.236(1) |
Zn0.96Fe0.04O | 3.2465(1) | 5.2054(2) | 47.51 (1) | 2.17 | 25(1) | 3.74 | 3.216(1) |
Zn0.95Fe0.05O | 3.2479(1) | 5.2012(3) | 47.51 (1) | 2.37 | 45(2) | 4.97 | 3.197(1) |
Zn0.94Fe0.06O | 3.2482(1) | 5.2057(2) | 47.57 (1) | 1.88 | 26(2) | 5.67 | 3.195(1) |
Sample (x) | ΔT | θ (K) | C (K.emu/g.Oe) | χ0 (10−5 emu/g.Oe) | n |
---|---|---|---|---|---|
0.06 | 225–300 K | 156 | 0.014 | −5.36 | 1 |
150–225 K | 77 | 0.096 | −24.60 | 1.1 | |
75–150 K | −53 | 1.078 | −125.00 | 1.2 | |
0.05 | 225–300 K | 150 | 0.004 | −1.73 | 1 |
150–225 K | 71 | 0.026 | −6.53 | 1.1 | |
75–150 K | −37 | 0.216 | −25.90 | 1.2 | |
0.04 | 225–300 K | 193 | 0.022 | −15.10 | 1 |
150–225 K | 114 | 0.310 | −23.20 | 1.1 | |
75–150 K | −168 | 1.720 | −29.00 | 1.2 | |
0.01 | 225–300 K | 123 | 0.009 | −1.83 | 1 |
150–225 K | −12 | 0.011 | −20.00 | 1.1 | |
75–150 K | −770 | 0.820 | −0.06 | 1.2 |
Sample (x) | T(K) | Site | δ (mm/s) * (± 0.01) | ∆EQ/2ε (mm/s) (± 0.02) | Bhf (T) ** (± 0.5) | Γ (mm/s) (± 0.02) | Area (%) (± 1) |
---|---|---|---|---|---|---|---|
0.01 | 300 | Doublet I | 0.35 | 0.66 | – | 0.42 | 57 |
Doublet II | 0.31 | 1.10 | – | 0.53 | 43 | ||
50 | Bhf Dist. | 0.48 | −0.07 | 26.1 | – | 43 | |
Doublet III | 0.47 | 0.80 | – | 0.75 | 57 | ||
25 | Bhf Dist. | 0.50 | −0.07 | 39.3 | – | 58 | |
Doublet III | 0.47 | 0.76 | – | 0.96 | 42 | ||
0.04 | 300 | Doublet I | 0.34 | 0.48 | – | 0.43 | 50 |
Doublet II | 0.32 | 0.92 | – | 0.61 | 50 | ||
50 | Bhf Dist. | 0.43 | −0.02 | 29.4 | – | 50 | |
Doublet III | 0.44 | 0.74 | – | 0.99 | 50 | ||
25 | Bhf Dist. | 0.45 | −0.02 | 37.7 | – | 74 | |
Doublet III | 0.42 | 0.79 | – | 0.68 | 26 | ||
0.05 | 300 | Doublet I | 0.36 | 0.55 | – | 0.40 | 26 |
Doublet II | 0.33 | 0.92 | – | 0.79 | 74 | ||
150 | Doublet I | 0.36 | 0.55 | – | 0.33 | 25 | |
Doublet II | 0.32 | 0.87 | – | 0.76 | 75 | ||
100 | Bhf Dist. | 0.40 | −0.08 | 14.9 | – | 35 | |
Doublet III | 0.44 | 0.61 | – | 0.78 | 65 | ||
50 | Bhf Dist. | 0.43 | −0.02 | 26.6 | – | 52 | |
Doublet III | 0.44 | 0.67 | – | 0.96 | 48 | ||
40 | Bhf Dist. | 0.43 | −0.01 | 28.3 | – | 71 | |
Doublet III | 0.44 | 0.69 | – | 0.69 | 29 | ||
35 | Bhf Dist. | 0.43 | −0.02 | 30.3 | – | 80 | |
Doublet III | 0.43 | 0.70 | – | 0.83 | 20 | ||
30 | Bhf Dist. | 0.43 | −0.07 | 31.8 | – | 86 | |
Doublet III | 0.42 | 0.64 | – | 0.64 | 14 | ||
25 | Bhf Dist. | 0.45 | −0.02 | 36.4 | – | 87 | |
Doublet III | 0.43 | 0.78 | – | 0.78 | 13 | ||
22 | Bhf Dist. | 0.45 | −0.07 | 38 | – | 88 | |
Doublet III | 0.42 | 0.78 | – | 0.77 | 12 | ||
4.2 | Sextet | 0.46 | 0.17 | 52.1 | 0.47 | 25 | |
Bhf Dist. | 0.45 | −0.08 | 50.0 | * | 65 | ||
Doublet III | 0.42 | 1.22 | – | 0.96 | 10 | ||
0.06 | 300 | Doublet I | 0.35 | 0.44 | – | 0.39 | 30 |
Doublet II | 0.32 | 0.77 | – | 0.73 | 70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felipe S. Tupan, L.; Valerio-Cuadros, M.I.; Oliveira, A.A.; Barco, R.; Ivashita, F.F.; Lopes, L.F.; Passamani, E.C.; Paesano, A., Jr. Spin-Glass Transitions in Zn1-xFexO Nanoparticles. Materials 2020, 13, 869. https://doi.org/10.3390/ma13040869
Felipe S. Tupan L, Valerio-Cuadros MI, Oliveira AA, Barco R, Ivashita FF, Lopes LF, Passamani EC, Paesano A Jr. Spin-Glass Transitions in Zn1-xFexO Nanoparticles. Materials. 2020; 13(4):869. https://doi.org/10.3390/ma13040869
Chicago/Turabian StyleFelipe S. Tupan, Lilian, Marlon I. Valerio-Cuadros, Aline Alves Oliveira, Reginaldo Barco, Flávio Francisco Ivashita, Lutiene F. Lopes, Edson C. Passamani, and Andrea Paesano, Jr. 2020. "Spin-Glass Transitions in Zn1-xFexO Nanoparticles" Materials 13, no. 4: 869. https://doi.org/10.3390/ma13040869
APA StyleFelipe S. Tupan, L., Valerio-Cuadros, M. I., Oliveira, A. A., Barco, R., Ivashita, F. F., Lopes, L. F., Passamani, E. C., & Paesano, A., Jr. (2020). Spin-Glass Transitions in Zn1-xFexO Nanoparticles. Materials, 13(4), 869. https://doi.org/10.3390/ma13040869