Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Ti Disc Preparation
2.3. Sample Coating
2.4. Simulated Body Fluid (SBF) Preparation
2.5. Hydroxyapatite Formation under a Digital Microscope System
2.6. Scanning Electron Microscopy (SEM) Imaging
2.7. Energy Dispersive x-Rays Analysis (EDX)
3. Results
3.1. Optical Magnification
3.2. Scanning Electron Microscopy
3.3. Energy Dispersive Analysis X-rays (EDX)
3.4. Thickness of Hydroxyapatite Layer
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abraham, C.M. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. Open Dent. J. 2014, 8, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gavilan, F.; Araújo-Gomes, N.; Sánchez-Pérez, A.M.; García-Arnáez, I.; Elortza, F.; Azkargorta, M.; de Llano, J.J.M.; Carda, C.; Gurruchaga, M.; Suay, J.; et al. Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surf. B Biointerfaces 2018, 162, 316–325. [Google Scholar] [CrossRef]
- Lotz, E.M.; Berger, M.B.; Schwartz, Z.; Boyan, B.D. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater. 2018, 68, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Javadi, A.; Solouk, A.; Haghbin Nazarpak, M.; Bagheri, F. Surface engineering of titanium-based implants using electrospraying and dip coating methods. Mater. Sci. Eng. C 2019, 99, 620–630. [Google Scholar] [CrossRef]
- Velasco-Ortega, E.; Ortiz-García, I.; Jiménez-Guerra, A.; Monsalve-Guil, L.; Muñoz-Guzón, F.; Perez, R.A.; Gil, F.J. Comparison between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants: In Vivo Study. IJMS 2019, 20, 3267. [Google Scholar] [CrossRef]
- Zhao, W.; Lemaître, J.; Bowen, P. A comparative study of simulated body fluids in the presence of proteins. Acta Biomater. 2017, 53, 506–514. [Google Scholar] [CrossRef]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef]
- Mieszkowska, A.; Folkert, J.; Burke, B.; Addison, O.; Gurzawska, K. Pectin Coating of Titanium and polystyrene Surfaces Modulates the Macrophage Inflammatory Response. Eur. J. Biol. Res. 2018, 8, 84–95. [Google Scholar] [CrossRef]
- Kokubo, T.; Yamaguchi, S. Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments. TOBEJ 2015, 9, 29–41. [Google Scholar] [CrossRef]
- Ha, S.-W.; Jang, H.L.; Nam, K.T.; Beck, G.R. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 2015, 65, 32–42. [Google Scholar] [CrossRef]
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Moskalewicz, T.; Łukaszczyk, A.; Kruk, A.; Kot, M.; Jugowiec, D.; Dubiel, B.; Radziszewska, A. Porous HA and nanocomposite nc-TiO2/HA coatings to improve the electrochemical corrosion resistance of the Co-28Cr-5Mo alloy. Mater. Chem. Phys. 2017, 199, 144–158. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Bran, S.; Băciuț, M.; Băciuț, G.; Lucaciu, O.; Dinu, C.M.; Todea, D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- Scheel, J.; Hermann, M. Integrated risk assessment of a hydroxyapatite–protein-composite for use in oral care products: A weight-of-evidence case study. Regul. Toxicol. Pharmacol. 2011, 59, 310–323. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Pagano, S.; Lombardo, G.; Marinucci, L.; Kenny, J.M.; Torre, L.; Cianetti, S. Effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of glass ionomer cements for special needs patients. J. Mater. Res. 2018, 33, 638–649. [Google Scholar] [CrossRef]
- Gafurov, M.R.; Biktagirov, T.B.; Mamin, G.V.; Shurtakova, D.V.; Klimashina, E.S.; Putlyaev, V.I.; Orlinskii, S.B. Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods. Phys. Solid State 2016, 58, 469–474. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.; Fares, C.; Hsu, S.-M.; Xian, M.; Xia, X.; Ren, F.; Mecholsky, J.J.; Gonzaga, L.; Esquivel-Upshaw, J. Demonstration of a SiC Protective Coating for Titanium Implants. Materials 2020, 13, 3321. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The Effect of Ultraviolet Functionalization of Titanium on Integration with Bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef]
- Wang, X.; Qu, Z.; Li, J.; Zhang, E. Comparison study on the solution-based surface biomodification of titanium: Surface characteristics and cell biocompatibility. Surf. Coat. Technol. 2017, 329, 109–119. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Perrotti, V.; Iezzi, G.; Piattelli, A.; Prati, C. Micro-Topography and Reactivity of Implant Surfaces: An In Vitro Study in Simulated Body Fluid (SBF). Microsc. Microanal. 2015, 21, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Ting, O.P.; Yee, T.S.; Pushparajan, S.; Swaminathan, D.; Kutty, M.G. Biomimetic Coating of Modified Titanium Surfaces with Hydroxyapatite Using Simulated Body Fluid. Adv. Mater. Sci. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Carey, P.H.; Ren, F.; Jia, Z.; Batich, C.D.; Camargo, S.E.A.; Clark, A.E.; Craciun, V.; Neal, D.W.; Esquivel-Upshaw, J.F. Antibacterial Properties of Charged TiN Surfaces for Dental Implant Application. Chem. Sel. 2019, 4, 9185–9189. [Google Scholar] [CrossRef] [PubMed]
- Afonso Camargo, S.E.; Mohiuddeen, A.S.; Fares, C.; Partain, J.L.; Carey, P.H.; Ren, F.; Hsu, S.-M.; Clark, A.E.; Esquivel-Upshaw, J.F. Anti-Bacterial Properties and Biocompatibility of Novel SiC Coating for Dental Ceramic. JFB 2020, 11, 33. [Google Scholar] [CrossRef]
- Camargo, S.E.A.; Roy, T.; Carey, P.H., IV; Fares, C.; Ren, F.; Clark, A.E.; Esquivel-Upshaw, J.F. Novel Coatings to Minimize Bacterial Adhesion and Promote Osteoblast Activity for Titanium Implants. JFB 2020, 11, 42. [Google Scholar] [CrossRef]
- Hsu, S.-M.; Ren, F.; Chen, Z.; Kim, M.; Fares, C.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Novel Coating to Minimize Corrosion of Glass-Ceramics for Dental Applications. Materials 2020, 13, 1215. [Google Scholar] [CrossRef]
- Boonyawan, D.; Waruriya, P.; Suttiat, K. Characterization of titanium nitride–hydroxyapatite on PEEK for dental implants by co-axis target magnetron sputtering. Surf. Coat. Technol. 2016, 306, 164–170. [Google Scholar] [CrossRef]
- Camargo, W.A.; Takemoto, S.; Hoekstra, J.W.; Leeuwenburgh, S.C.G.; Jansen, J.A.; van den Beucken, J.J.J.P.; Alghamdi, H.S. Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 2017, 57, 511–523. [Google Scholar] [CrossRef]
- Nijhuis, A.W.G.; Takemoto, S.; Nejadnik, M.R.; Li, Y.; Yang, X.; Ossipov, D.A.; Hilborn, J.; Mikos, A.G.; Yoshinari, M.; Jansen, J.A.; et al. Rapid Screening of Mineralization Capacity of Biomaterials by Means of Quantification of Enzymatically Deposited Calcium Phosphate. Tissue Eng. Part C Methods 2014, 20, 838–850. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Maté Sánchez de Val, J.E.; Calvo-Guirado, J.L.; Gómez-Moreno, G.; Pérez-Albacete Martínez, C.; Mazón, P.; De Aza, P.N. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: Synthesis, characterization of the materials, and SEM analysis. Clin. Oral Implant. Res. 2016, 27, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Akpan, E.S.; Dauda, M.; Kuburi, L.S.; Obada, D.O.; Dodoo-Arhin, D. A comparative study of the mechanical integrity of natural hydroxyapatite scaffolds prepared from two biogenic sources using a low compaction pressure method. Results Phys. 2020, 17, 103051. [Google Scholar] [CrossRef]
- Golestani-Fard, F.; Bayati, M.R.; Zargar, H.R.; Abbasi, S.; Rezaei, H.R. MAO-Preparation of Nanocrystalline Hydroxyapatite–Titania Composite Films: Formation Stages and Effect of the Growth Time. Mater. Res. Bull. 2011, 46, 2422–2426. [Google Scholar] [CrossRef]
- Carradò, A.; Perrin-Schmitt, F.; Le, Q.V.; Giraudel, M.; Fischer, C.; Koenig, G.; Jacomine, L.; Behr, L.; Chalom, A.; Fiette, L.; et al. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dent. Mater. 2017, 33, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Türk, S.; Altınsoy, I.; Çelebi Efe, G.; Ipek, M.; Özacar, M.; Bindal, C. A comparison of pretreatments on hydroxyapatite formation on Ti by biomimetic method. J. Aust. Ceram Soc. 2018, 54, 533–543. [Google Scholar] [CrossRef]
- Nygren, H.; Ilver, L.; Malmberg, P. Mineralization at Titanium Surfaces is a Two-Step Process. JFB 2016, 7, 7. [Google Scholar] [CrossRef]
- Masuda, T.; Salvi, G.E.; Offenbacher, S.; Felton, D.A.; Cooper, L.F. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Int. J. Oral. Maxillofac. Implant. 1997, 12, 472–485. [Google Scholar]
- Ya-Jing, Y.; Da-Chuan, Y.; Peng, S. Effect of microgravity and a high magnetic field on hydroxyapatite deposition and implications for bone loss in space. Appl. Surf. Sci. 2010, 256, 7535–7539. [Google Scholar] [CrossRef]
- Jayasree, R.; Sampath Kumar, T. Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. J. Compos. Mater. 2015, 49, 2921–2933. [Google Scholar] [CrossRef]
- Kodaira, A.; Nonami, T. Crystal structure and formation mechanism of spherical porous hydroxyapatite synthesised in simulated body fluid. Mater. Technol. 2019, 34, 185–191. [Google Scholar] [CrossRef]
- Ferraris, S.; Yamaguchi, S.; Barbani, N.; Cazzola, M.; Cristallini, C.; Miola, M.; Vernè, E.; Spriano, S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020, 102, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Pazarceviren, A.E.; Tezcaner, A.; Evis, Z. Historical Development of Simulated Body Fluids Used in Biomedical Applications: A Review. Microchem. J. 2020, 155, 104713. [Google Scholar] [CrossRef]
- Barthes, J.; Cazzola, M.; Muller, C.; Dollinger, C.; Debry, C.; Ferraris, S.; Spriano, S.; Vrana, N.E. Controlling porous titanium/soft tissue interactions with an innovative surface chemical treatment: Responses of macrophages and fibroblasts. Mater. Sci. Eng. C 2020, 112, 110845. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Yamaguchi, S. Simulated body fluid and the novel bioactive materials derived from it. J. Biomed. Mater. Res. 2019, 107, 968–977. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, R.; Gao, H.; Xu, W.; Xiao, G.; Chen, C.; Lu, Y. A high bioactive alkali-treated titanium surface induced by induction heat treatment. Surf. Coat. Technol. 2020, 385, 125362. [Google Scholar] [CrossRef]
- Rau, J.V.; Fosca, M.; Cacciotti, I.; Laureti, S.; Bianco, A.; Teghil, R. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 2013, 543, 167–170. [Google Scholar] [CrossRef]
- Taha, M.A.; Youness, R.A.; Ibrahim, M. Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 2020, 46, 23599–23610. [Google Scholar] [CrossRef]
- Teng, H.-P.; Lin, H.-Y.; Huang, Y.-H.; Lu, F.-H. Formation of strontium-substituted hydroxyapatite coatings on bulk Ti and TiN-coated substrates by plasma electrolytic oxidation. Surf. Coat. Technol. 2018, 350, 1112–1119. [Google Scholar] [CrossRef]
- Iqbal, H.; Ali, M.; Zeeshan, R.; Mutahir, Z.; Iqbal, F.; Nawaz, M.A.H.; Shahzadi, L.; Chaudhry, A.A.; Yar, M.; Luan, S.; et al. Chitosan/Hydroxyapatite (HA)/Hydroxypropylmethyl Cellulose (HPMC) Spongy Scaffolds-Synthesis and Evaluation as Potential Alveolar Bone Substitutes. Colloids Surf. B Biointerfaces 2017, 160, 553–563. [Google Scholar] [CrossRef]
- Gherlone, E.F.; Capparé, P.; Tecco, S.; Polizzi, E.; Pantaleo, G.; Gastaldi, G.; Grusovin, M.G. Implant Prosthetic Rehabilitation in Controlled HIV-Positive Patients: A Prospective Longitudinal Study with 1-Year Follow-Up: Implants in HIV Patients. Clin. Implant. Dent. Relat. Res. 2016, 18, 725–734. [Google Scholar] [CrossRef]
- Leena, M.; Rana, D.; Webster, T.J.; Ramalingam, M. Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater. Chem. Phys. 2016, 180, 166–172. [Google Scholar] [CrossRef]
Ion | SBF | Blood Plasma |
---|---|---|
Na+ | 142.0 | 142.0 |
K+ | 5.0 | 5.0 |
Mg2+ | 1.5 | 1.5 |
Ca2+ | 2.5 | 2.5 |
Cl− | 148.9 | 103.0 |
HCO3− | 4.2 | 27.0 |
HPO42− | 1.0 | 1.0 |
SO42− | 0.5 | 0.5 |
Order | Reagent | Amount |
---|---|---|
1 | NaCl | 12.000 g |
2 | NaHCO3 | 0.525 g |
3 | KCl | 0.336 g |
4 | K2HPO4∙H2O | 0.342 g |
5 | MgCl2 | 0.214 g |
6 | 1 M HCl | 61.950 mL |
7 | CaCl2∙2H2O | 0.552 g |
8 | Na2SO4 | 0.107 g |
9 | (CH2OH)3CNH2 | 9.086 g |
Coating | Atomic % | Ca/P Ratio | ||
---|---|---|---|---|
O | P | Ca | Ca/P | |
Control (Ti) | 57.12 | 14.71 | 28.17 | 1.92 |
NaOH | 55.78 | 15.73 | 28.49 | 1.81 |
QTiN | 55.19 | 15.30 | 28.12 | 1.84 |
SiO2 | 55.12 | 15.70 | 29.18 | 1.86 |
TiN | 57.69 | 14.96 | 27.36 | 1.83 |
Coating Tested | Disc Surface Area (mm2) | HA Mass (mg) | HA Thickness (µm) |
---|---|---|---|
Control (Ti) | 171.90 | 2.72 | 5.04 |
NaOH | 159.05 | 3.67 | 7.20 |
QTiN | 101.66 | 2.18 | 6.78 |
SiO2 | 152.07 | 2.02 | 4.18 |
TiN | 143.50 | 2.00 | 4.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviles, T.; Hsu, S.-M.; Clark, A.; Ren, F.; Fares, C.; Carey, P.H., IV; Esquivel-Upshaw, J.F. Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. Materials 2020, 13, 5593. https://doi.org/10.3390/ma13245593
Aviles T, Hsu S-M, Clark A, Ren F, Fares C, Carey PH IV, Esquivel-Upshaw JF. Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. Materials. 2020; 13(24):5593. https://doi.org/10.3390/ma13245593
Chicago/Turabian StyleAviles, Tatiana, Shu-Min Hsu, Arthur Clark, Fan Ren, Chaker Fares, Patrick H. Carey, IV, and Josephine F. Esquivel-Upshaw. 2020. "Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid" Materials 13, no. 24: 5593. https://doi.org/10.3390/ma13245593
APA StyleAviles, T., Hsu, S.-M., Clark, A., Ren, F., Fares, C., Carey, P. H., IV, & Esquivel-Upshaw, J. F. (2020). Hydroxyapatite Formation on Coated Titanium Implants Submerged in Simulated Body Fluid. Materials, 13(24), 5593. https://doi.org/10.3390/ma13245593