A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials, Pretreatment, and Deposition
2.2. Substrate Properties
2.3. Coating and Surface Analysis
2.4. Tribology
3. Results and Discussion
3.1. Substrate Properties
3.2. Coating Properties
3.3. Roughness and Surface Topography
3.4. Friction Measurement, Temperature in Contact Zone, and Contact Area
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Röthemeyer, F.; Sommer, F. Kautschuktechnologie, 3rd ed.; Carl Hanser Verlag: München, Germany, 2013. [Google Scholar]
- Donnet, C.; Erdemir, A. Tribology of Diamond-Like Carbon Films; Springer: New York, NY, USA, 2008. [Google Scholar]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Paulkowski, D.; Bayrak, S.; Baghdadi, M. Die Energieeffizienz von Maschinen steigern Diamantartige Plasmabeschichtungen auf Elastomeren. Dicht. Jahr. 2020, 16, 191–201. [Google Scholar]
- Nakahigashi, T.; Tanaka, Y.; Miyake, K.; Oohara, H. Properties of flexible DLC film deposited by amplitude-modulated RF P-CVD. Trib. Int. 2004, 37, 907–912. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 38, 311–327. [Google Scholar] [CrossRef]
- Martinez-Martinez, D.; de Hosson, J.T.M. On the deposition and properties of DLC protective coatings on elastomers: A critical review. Surf. Coat. Tech. 2014, 258, 677–690. [Google Scholar] [CrossRef]
- Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; de Hosson, J.T.M. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate. Surf. Coat. Tech. 2009, 203, 1964–1970. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, B.; Matthews, A. Adhesion of diamond-like carbon films on polymers: An assessment of the validity of the scratch test technique applied to flexible substrates. J. Adh. Sci. Tech. 1994, 8, 651–662. [Google Scholar] [CrossRef]
- Martinez-Martinez, D.; Schenkel, M.; Pei, Y.T.; Sánchez-López, J.C.; de Hosson, J. Microstructure and chemical bonding of DLC films deposited on ACM rubber by PACVD. Surf. Coat. Tech. 2011, 205, 75–78. [Google Scholar] [CrossRef]
- Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantzis, A.V.; van de Sanden, M.; de Hosson, J. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma. Surf. Coat. Tech. 2014, 245, 74–83. [Google Scholar] [CrossRef]
- Masami, I.; Haruho, M.; Tatsuya, M.; Junho, C. Low temperature Si-DLC coatings on fluoro rubber by a bipolar pulse type PBII system. Surf. Coat. Tech. 2011, 206, 999–1002. [Google Scholar] [CrossRef]
- Kummer, H.W. Unified theory of rubber and tire friction. Eng. Res. Bul. 1966, 94, 130–135. [Google Scholar]
- Persson, B.N.J.; Tosatti, E. Qualitative theory of rubber friction and wear. J. Chem. Phys. 2000, 112, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.N.J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861. [Google Scholar] [CrossRef] [Green Version]
- Pinnington, R.J. Rubber friction on rough and smooth surfaces. Wear 2009, 267, 1653–1664. [Google Scholar] [CrossRef]
- Persson, B.N.J. Sliding friction. Surf. Sci. Rep. 1999, 33, 83–119. [Google Scholar] [CrossRef]
- Schallamach, A. A theory of dynamic rubber friction. Wear 1963, 6, 376–383. [Google Scholar] [CrossRef]
- Klüppel, M.; Heinrich, G. Rubber Friction on Self-Affine Road Tracks. Rub. Chem. Tech. 2000, 73, 578–606. [Google Scholar] [CrossRef]
- Persson, B.N.J.; Volokitin, A.I. Rubber friction on smooth surfaces. Eur. Phys. J. 2006, 21, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.F. The Friction and Lubrication of Elastomers; Pergamon Press: New York, NY, USA, 1972. [Google Scholar]
- Adam, A.; Paulkowski, D.; Mayer, B. Friction and Deformation Behavior of Elastomers. Mater. Sci. Appl. 2019, 10, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Thirumalai, S.; Hausberger, A.; Lackner, J.M.; Waldhauser, W.; Schwarz, T. Effect of the type of elastomeric substrate on the microstructural, surface and tribological characteristics of diamond-like carbon (DLC) coatings. Surf. Coat. Tech. 2016, 302, 244–254. [Google Scholar] [CrossRef]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Bayrak, S.; Paulkowski, D. Low Friction and Wear of Elastomers by DLC Coating. In Proceedings of the German Tribology Conference, Göttingen, Germany, 25 September 2019. [Google Scholar]
- Ikeyama, M.; Nakao, S.; Miyagawa, Y.; Miyagawa, S. Effects of Si content in DLC films on their friction and wear properties. Surf. Coat. Tech. 2005, 191, 38–42. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical transactions. Mater Phy. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Wrana, C. Polymerphysik. Eine Physikalische Beschreibung von Elastomeren und Ihren Anwendungsrelevanten Eigenschaften; Springer: Berlin, Germany, 2014. [Google Scholar]
- Komori, K.; Umehara, N. Friction and Wear Properties of Tetrahedral Si-Containing Hydrogenated Diamond-Like Carbon Coating under Lubricated Condition with Engine-Oil Containing ZnDTP and MoDTC. Tribol. Online 2017, 12, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Terashima, K.; Utsushikawa, Y. Relationship between hydrogen content and magnetic properties of diamondlike carbon produced by the rf plasma-enhanced chemical vapor deposition method. J. Appl. Phys. 2010, 107, 073522. [Google Scholar] [CrossRef]
- Saito, T.; Ozeki, T.; Terashima, K. Magnetism in diamond-like carbon. Solid State Commun. 2005, 136, 546–549. [Google Scholar] [CrossRef]
- Oka, Y.; Nishijima, M.; Hiraga, K.; Yatsuzuka, M. Effect of Ion Implantation on DLC Preparation Using PBIID Process. IEEE Trans. Plasma Sci. 2006, 34, 1183–1189. [Google Scholar] [CrossRef]
- Muguruma, T.; Iijima, M.; Kawaguchi, M.; Mizoguchi, I. Effects of sp2/sp3 Ratio and Hydrogen Content on In Vitro Bending and Frictional Performance of DLC-Coated Orthodontic Stainless Steels. Coatings 2018, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Baba, K.; Hatada, R.; Flege, S.; Ensinger, W. Diamond-Like Carbon Films with Low Internal Stress by a Simple Bilayer Approach. Coatings 2020, 10, 696. [Google Scholar] [CrossRef]
- Chen, X.; Kato, T. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity. J. Appl. Phys. 2014, 115, 044908. [Google Scholar] [CrossRef]
- Peter, S.; Günther, M.; Hauschild, D.; Grambole, D.; Richter, F. Mid-frequency deposition of a-C:H films using five different precursors. Vacuum 2010, 88, 958–961. [Google Scholar] [CrossRef]
- Chen, X.; Kato, T.; Nosaka, M. Origin of superlubricity in a-C:H:Si films: A relation to film bonding structure and environmental molecular characteristic. ACS Appl. Mater. Interfaces 2014, 6, 13389–13405. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.T.; Bui, X.L.; van der Pal, J.P.; Martinez-Martinez, D.; Zhou, X.B.; de Hosson, J.T.M. Flexible diamond-like carbon films on rubber: On the origin of self-acting segmentation and film flexibility. Act. Mater 2012, 60, 5526–5535. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.N.J. Rubber friction: Role of the flash temperature. J. Phys. 2006, 18, 7789–7823. [Google Scholar] [CrossRef]
- Staar, B.; Bayrak, S.; Paulkowski, D.; Freitag, M. A U-Net Based Approach for Automating Tribological Experiments. Sensors 2020, 20, 6703. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Amount [phr 1] |
---|---|
NBR rubber (Perbunan 3446F) | 100 |
Carbon black N330 | 40 |
Zinc oxide ZnO | 5 |
Stearic acid | 1.5 |
MBTS | 1.5 |
Sulfur | variable: 1.5, 3, 6, 9 |
Deposition Parameters | Pretreatment | Interlayer | Functional Layer | ||||||
---|---|---|---|---|---|---|---|---|---|
Precursor | Gas flow | Bias | Time | Gas flow | Bias | Time | Gas flow | Bias | Time |
[sccm] | [V] | [s] | [sccm] | [V] | [s] | [sccm] | [V] | [s] | |
Argon | 30 | 400 | 120 | - | - | - | - | - | - |
Tetramethylsilane (TMS) | - | - | - | 20 | 600 | 120 | 20 | 600 | 480 |
Toluene | - | - | - | - | - | - | 80 | 600 | 480 |
Load | Velocity | Temperature | Ball diameter | Material |
---|---|---|---|---|
[N] | [mm/s] | [°C] | [mm] | 100Cr6 / |
10 | 1200 | 30 | 10 | Borosilicate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayrak, S.; Paulkowski, D.; Stöckelhuber, K.W.; Staar, B.; Mayer, B. A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber. Materials 2020, 13, 5460. https://doi.org/10.3390/ma13235460
Bayrak S, Paulkowski D, Stöckelhuber KW, Staar B, Mayer B. A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber. Materials. 2020; 13(23):5460. https://doi.org/10.3390/ma13235460
Chicago/Turabian StyleBayrak, Suleyman, Dominik Paulkowski, Klaus Werner Stöckelhuber, Benjamin Staar, and Bernd Mayer. 2020. "A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber" Materials 13, no. 23: 5460. https://doi.org/10.3390/ma13235460
APA StyleBayrak, S., Paulkowski, D., Stöckelhuber, K. W., Staar, B., & Mayer, B. (2020). A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber. Materials, 13(23), 5460. https://doi.org/10.3390/ma13235460