Evaluation of Bone Gain and Complication Rates after Guided Bone Regeneration with Titanium Foils: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Questions
- Is the use of occlusive titanium barriers alone or in combination with biomaterial a predictable treatment in terms of amount of new bone formed? (primary question)
- What is the complication rate regarding membrane exposure and infection? (primary question)
- What is the survival and success rate of implants placed after this regenerative procedure? (secondary question)
2.2. PICO Question
2.3. Eligibility Criteria
2.4. Search Strategy
2.5. Study Selection
2.6. Data Extraction and Method of Analysis
2.7. Quality Assessment and Risk of Bias
3. Results
3.1. Study Selection
3.2. Study Methods and Characteristics
3.3. Quality Assessment and Risk of Bias
3.4. Bone Gain
3.5. Complications
3.6. Implant Survival and Success Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, H.-L.; Boyapati, L. “PASS” principles for predictable bone regeneration. Implant Dent. 2006, 15, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, B.S.; Hahgighat, K. Bone augmentation techniques. J. Periodontol. 2007, 78, 277–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benic, G.I.; Hämmerle, C.H.F. Horizontal bone augmentation by means of guided bone regeneration. Periodontology 2000 2014, 66, 13–40. [Google Scholar] [CrossRef]
- Bertolino, V.; Cavallaro, G.; Milioto, S.; Lazzara, G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr. Polym. 2020, 245, 116502. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, C.; Lazzara, G.; Fakhrullin, R. Mesoporous inorganic nanoscale particles for drug adsorption and controlled release. Ther. Deliv. 2018, 9, 287–301. [Google Scholar] [CrossRef]
- Soldatos, N.K.; Stylianou, P.; Koidou, V.P.; Angelov, N.; Yukna, R.; Romanos, G.E. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017, 48, 131–147. [Google Scholar]
- Cardaropoli, G.; Araújo, M.; Lindhe, J. Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J. Clin. Periodontol. 2003, 30, 809–819. [Google Scholar] [CrossRef]
- Araújo, M.G.; Lindhe, J. Dimensional ridge alterations following tooth extraction. An experimental study in dog. J. Clin. Periodontol. 2005, 32, 212–218. [Google Scholar] [CrossRef]
- Srinivas, B.; Das, P.; Rana, M.M.; Qureshi, A.Q.; Vaidya, K.C.; Raziuddin, S.J.A. Wound healing and bone regeneration in postextraction sockets with and without platelet-rich fibrin. Ann. Maxillofac. Surg. 2018, 8, 28–34. [Google Scholar]
- Li, J.; Chen, M.; Wei, X.; Hao, Y.; Wang, J. Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration. Materials 2017, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Batas, L.; Tsalikis, L.; Stavropoulos, A. PRGF as adjunct to DBB in maxillary sinus floor augmentation: Histological results of a pilot Split-mouth study. Int. J. Implant Dent. 2019, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Gersh, K.C.; Nagaswami, C.; Weisel, J.W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb. Haemost. 2009, 102, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thor, A.; Rasmusson, L.; Wennerberg, A.; Thomsen, P.; Hirsch, J.-M.; Nilsson, B.; Hong, J. The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials 2007, 28, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Polimeni, G.; Koo, K.-T.; Qahash, M.; Xiropaidis, A.V.; Albandar, J.M.; Wikesjö, M.E. Prognostic factors for alveolar regeneration: Effect of a space-providing biomaterial on guided tissue regeneration. J. Clin. Periodontol. 2004, 31, 725–729. [Google Scholar] [CrossRef]
- Jovanovic, S.S.; Nevins, M. Bone formation utilizing titanium-reinforced barrier membranes. Int. J. Periodontics Restor. Dent. 1995, 15, 56–69. [Google Scholar] [CrossRef]
- Simion, M.; Trisi, P.; Piattelli, A. Vertical risge augmentation using a membrane technique associated with osseointegrated implants. Int. J. Periodontics Restor. Dent. 1994, 14, 496–511. [Google Scholar]
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef]
- Caballé-Serrano, J.; Munar-Frau, A.; Ortiz-Puigpelat, O.; Soto-Penaloza, D.; Peñarrocha, M.; Herández-Alfaro, F. On the search of the ideal barrier membrane for guided bone regeneration. J. Clin. Exp. Dent. 2018, 10, e477–e483. [Google Scholar] [CrossRef]
- Kfir, E.; Kfir, V.; Kaluski, E. Immediate bone augmentation after infected tooth extraction using titanium membranes. J. Oral Implantol. 2007, 33, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Bassi, M.A.; Andrisani, C.; Lico, S.; Ormanier, Z.; Ottria, L.; Gargari, M. Guided bone regeneration via a performed titanium foil: Clinical, histological and histomorphometric outcome of a case series. Oral Implantol. 2016, 9, 164–174. [Google Scholar]
- Van Steenberghe, D.; Johansson, C.; Quirynen, M.; Molly, L.; Albrektsson, T.; Naert, I. Bone augmentation by means of a stiff occlusive titanium barrier. Clin. Oral Implants Res. 2003, 14, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bassi, M.A.; Andrisani, C.; López, M.A.; Gaudio, R.M.; Lombardo, L.; Lauritano, D. Guided bone regeneration in distal mandibular atrophy by means of a performed titanium foil: A case series. J. Biol. Regul. Homeost. Agents 2016, 30, 61–68. [Google Scholar]
- Bassi, M.A.; Andrisani, C.; López, M.A.; Gaudio, R.M.; Lombardo, L.; Carinci, F. Guided bone regeneration by means of a preformed titanium foil: A case of severe atrophy of edentulous posterior mandible. J. Biol. Homeost. Agents 2016, 30, 35–41. [Google Scholar]
- Molly, L.; Quirynen, M.; Michiels, K.; van Steenberghe, D. Comparison between jaw bone augmentation by means of a stiff occlusive titanium membrane or an autologous hip graft: A retrospective clinical assessment. Clin. Oral Implants Res. 2006, 17, 481–487. [Google Scholar] [CrossRef]
- Mauricio, E.J.M.; Faveri, M.; de Silva, H.D.P. Alveolar ridge regeneration of damaged extraction sockets using bovine-derived bone graft in association with a titanium foil: Prospective case series. J. Int. Acad. Periodontol. 2020, 22, 109–116. [Google Scholar]
- Perret, F.; Romano, F.; Ferrarotti, F.; Aimetti, M. Occlusive titanium barrier for immediate bone augmentation of severely resorbed alveolar sockets with secondary soft tissue healing: A 2-year case series. Int. J. Periodontics Restor. Dent. 2019, 39, 97–105. [Google Scholar] [CrossRef]
- Toygar, H.U.; Guzeldemir, E.; Cilasun, U.; Akkor, D.; Arpak, N. Long-term clinical evaluation and SEM analysis of the e-PTFE and titanium membranes in guided tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 772–779. [Google Scholar] [CrossRef]
- Engelke, W.; Deccó, O.; Cura, A.C.; Borie, E.; Beltrán, V. Rigid occlusive titanium barriers for alveolar bone augmentation: Two reports with 24-month follow-up. Int. J. Clin. Exp. Med. 2014, 7, 1160–1165. [Google Scholar]
- Beltrán, V.; Engelke, W.; Fuentes, R.; Decco, O.; Prieto, R.; Wilckens, M.; Borie, E.; Beltran, V.; Engelke, W.; Fuentes, R.; et al. Bone augmentation with occlusive barriers and cortical particulate allograft in transverse maxillary defects: A pilot study. Int. J. Morphol. 2014, 32, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, V.; Matthijs, A.; Borie, E.; Fuentes, R.; Valdivia-Gandur, I.; Engelke, W. Bone healing in transverse maxillary defects with different surgical procedures using anorganic bovine bone in humans. Int. J. Morphol. 2013, 31, 75–81. [Google Scholar] [CrossRef]
- Gaggl, A.; Schultes, G. Titanium foil-guided tissue regeneration in the treatment of periimplant bone defects. Implant Dent. 1999, 8, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group. Preferred reporting ítems for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebell, M.H.; Siwek, J.; Weiss, B.D.; Woolf, S.H.; Susman, J.; Ewigman, B.; Bowman, M. Strenght of recommendation taxonomy (SORT): A patient-centered approach to grading evidence in the medical literatura. Am. Fam. Phys. 2004, 69, 548–556. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M. ROBINS-1: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrielinck, L.; Sun, Y.; Schepers, S.; Politis, C.; Slycke, S.V.; Agbaje, J.O. Osseous reconstruction using an occlusive titanium membrane following marginal mandibulectomy: Proof of principle. J. Craniofac. Surg. 2014, 25, 1112–1114. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Khanna, R.; Pardhe, N.D.; Srivastava, N.; Bajpai, M.; Gupta, S. Pute titanium membrane (Ultra-Ti®) in the treatment of periodontal osseous defects: A split-mouth comparative study. J. Clin. Diagn. Res. 2016, 10, ZC47–ZC51. [Google Scholar]
- Pinho, M.N.; Roriz, V.L.M.; Novaes, A.-B.; Taba, M.; Grisi, M.F.M.; de Souza, S.L.S.; Palioto, D.B. Titanium membranes in prevention of alveolar collapse after tooth extraction. Implant Dent. 2006, 15, 53–61. [Google Scholar] [CrossRef]
- Watzinger, F.; Luksch, J.; Millesi, W.; Schopper, C.; Neugebauer, J.; Moser, D.; Ewers, R. Guided bone regeneration with titanium membranes: A clinical study. Br. J. Oral Maxillofac. Surg. 2000, 38, 312–315. [Google Scholar] [CrossRef] [Green Version]
- Cucchi, A.; Vignudelli, E.; Napolitano, A.; Marchetti, C.; Corinaldesi, G. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meses and resorbable membranes. A randomized clinical trial. Clin. Implant Dent. Relat. Res. 2017, 19, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Urban, I.A.; Montero, E.; Monje, A.; Sanz-Sánchez, I. Effectiveness of vertical ridge augmentation interventions: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46, 319–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessing, B.; Lettner, S.; Zechner, W. Guided bone regeneration with collagen membranes and particulate graft materials: A systematic review and meta-analysis. Int. J. Oral Maxillodac. Implants 2018, 33, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Urban, I.A.; Nagursky, H.; Lozada, J.L.; Nagy, K. Horizontal risge augmentation with a collagen membrane and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: A prospective case series in 25 patients. Int. J. Periodontics Restor. Dent. 2013, 33, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meloni, S.M.; Jovanovic, S.A.; Urban, I.; Baldoni, E.; Pisano, M.; Tallarico, M. Horizontal ridge augmentation using GBR with a native collagen membrane and 1:1 ratio of particulate xenograft and autologous bone: A 3-year after final loading prospective clinical study. Clin. Implant Dent. Relat. Res. 2019, 21, 669–677. [Google Scholar] [CrossRef]
- Moraschini, V.; Poubel, L.A.; Ferreira, V.F.C.; Barboza, E.S.P. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 377–388. [Google Scholar] [CrossRef]
Author | Type of Study | Level of Evidence | N (Titanium Foils) | Type of Defect | Filling Material | Membrane Removal (Months) | Bone Gain (mm) | Membrane Exposure (%) | Infection (%) |
---|---|---|---|---|---|---|---|---|---|
Kfir et al., 2007 [19] | Case series | Level 3 | 15 | Post-extraction socket | PRF or PRF + TCP + HAP | NS | NS | 47% | 0% |
Bassi et al., 2016 [22] | Case series | Level 3 | 13 | HV | Allograft | 6.35 ± 2.15 | 5.9 ± 2.1 V; 8.9 ± 3.5 H | 38.5% | 0% |
Maeda et al., 2020 [25] | Case series | Level 3 | 15 | H | Xenograft | 21 days | 8.02 ± 2.43 (P1); 8.71 ± 2.26 (P2); 9.00 ± 2.52 (P3) | 100% (intentionally exposed) | 0% |
Perret et al., 2019 [26] | Case series | Level 3 | 6 | HV | Xenograft | 4 | 7.3 ± 2.2 (P1) 4.2 ± 1.2 (P2) V; 2.3 ± 1.0 H | 100% (intentionally exposed) | 0% |
Engelke et al., 2014 [28] | Case report | Level 3 | 2 | 1HV; 1H | β-Tricalcium phosphate | 3; NS | NS | 0% | 0% |
Molly et al., 2006 [24] | Retrospective study | Level 2 | 11 | HV | Blood clot | 9–17 | NS | 45.5% | NS |
Toygar et al., 2009 [27] | RCT | Level 2 | 16 | Periodontal Intrabony Defect | Blood clot | 1–1.5 | NS | 43.75% | NS |
Gaggl et al., 1999 [31] | Case series | Level 3 | 42 | Peri-implant Defect | Autograft + xenograft | NS | 4.5 ± 0.2 | 21.43% | 11.90% |
Beltrán et al., 2013 [30] | Case report | Level 3 | 1 | H | Xenograft | 7 | 4 mm | 0% | 0% |
Beltrán et al., 2014 [29] | Case series | Level 3 | 5 | H | Allograft | 6 | 2.3 (P1); 2.7 (P2); 2.9 (P3) | 0% | 0% |
Khanna et al., 2016 [37] | RCT | Level 2 | 12 | Periodontal Intrabony Defect | Blood clot | 5–6 weeks | 54.69% defect fill | 33.33% | 0% |
Pinho et al., 2006 [38] | RCT | Level 2 | 10 | Post-extraction socket | Blood clot (CS); autograft (TS) | Maximum 6 months | 8.80 ± 2.93 (C); 8.40 ± 3.35 (T) | 50% | 0% |
Watzinger et al., 2000 [39] | Case series | Level 3 | 112 | Different type defects | Autograft and/or hydroxyapatite | 4.6 | NS | 30% | NS |
Bias Domain ROBINS-1 | Molly et al. [24] | Bias Domain RoB 2 | Khanna et al. [37] | Pinho et al. [38] | Toygar et al. [27] |
---|---|---|---|---|---|
Confounding | Low | Randomization process | Unclear | Unclear | Unclear |
Selection of participants | High | ||||
Classification of interventions | Low | ||||
Deviations from intended interventions | Low | Deviations from intended interventions | Low | Low | Low |
Missing data | Low | Missing data | Low | Low | Unclear |
Measurement of outcomes | Low | Measurement of outcomes | Unclear | Low | Low |
Selection of reported result | Unclear | Selection of reported result | Low | Low | Low |
Overall bias | Unclear |
Author | N Patients | N Implants | Survival Rate | Success Rate | Follow-Up |
---|---|---|---|---|---|
Kfir et al., 2007 [19] | 8 | 9 | - | - | - |
Bassi et al., 2016 [22] | 13 | 23 | 100% | 82.6% | 1 year |
Perret et al., 2019 [26] | 6 | 6 | 100% | 100% | 2 years |
Engelke et al., 2014 [28] | 2 | 3 | 100% | - | 2 years |
Molly et al., 2006 [24] | 9 | 46 | 82.6% | - | 6–9 years |
Beltrán et al., 2013 [30] | 1 | 1 | 100% | - | - |
Total | 39 | 88 | 96.5% | 91.3% | 1–9 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roca-Millan, E.; Jané-Salas, E.; Estrugo-Devesa, A.; López-López, J. Evaluation of Bone Gain and Complication Rates after Guided Bone Regeneration with Titanium Foils: A Systematic Review. Materials 2020, 13, 5346. https://doi.org/10.3390/ma13235346
Roca-Millan E, Jané-Salas E, Estrugo-Devesa A, López-López J. Evaluation of Bone Gain and Complication Rates after Guided Bone Regeneration with Titanium Foils: A Systematic Review. Materials. 2020; 13(23):5346. https://doi.org/10.3390/ma13235346
Chicago/Turabian StyleRoca-Millan, Elisabet, Enric Jané-Salas, Albert Estrugo-Devesa, and José López-López. 2020. "Evaluation of Bone Gain and Complication Rates after Guided Bone Regeneration with Titanium Foils: A Systematic Review" Materials 13, no. 23: 5346. https://doi.org/10.3390/ma13235346
APA StyleRoca-Millan, E., Jané-Salas, E., Estrugo-Devesa, A., & López-López, J. (2020). Evaluation of Bone Gain and Complication Rates after Guided Bone Regeneration with Titanium Foils: A Systematic Review. Materials, 13(23), 5346. https://doi.org/10.3390/ma13235346