An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mix Proportions
2.3. Specimen Preparation
2.4. Testing Procedure
2.4.1. Compressive and Splitting Tensile Strengths
2.4.2. Three-Point Bending (TPB) Tests
3. Experimental Results
4. Determination of Softening Laws
5. Determination of Fracture Toughness
5.1. Experimental Approach
5.2. Analytical Approach
5.3. Results and Discussion
5.3.1. Initial and Unstable Fracture Toughness Values ( and )
5.3.2. Cohesive Fracture Toughness
6. Conclusions
- For both the PC and SG series, the values of at kink point and at the stress-free point of the bilinear softening law decrease, whereas the values of at the kink point generally increase with the compressive strength.
- The first descending slopes of the normalized bilinear softening curves of PCC and SGC are generally the same, whereas PCM has a gentler first descending branch than its SGM counterpart.
- The and of the PC and SG concrete and mortar all increase with compressive strength increase. Moreover, both and of SGM are lower than those of PCM given the same compressive strength.
- The of SGC is generally lower than that of PCC except for C30. Moreover, the of SGC at C30 is significantly higher than that of PCC and then becomes similar with increasing compressive strength.
- The variation of of the PC and SG series with increasing compressive strength is similar to that of unstable fracture toughness. The calculated by analytical approach and experimental approach is similar, which also proves the correctness of the bilinear softening laws obtained by inverse analysis and the applicability of the double-K fracture model to SG concrete and mortar.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
a0 | initial crack length |
ac | critical crack length |
B | specimen thickness |
Ci | initial compliance of load–CMOD curve |
crack mouth opening displacement | |
critical crack mouth opening displacement | |
crack tip opening displacement | |
critical crack tip opening displacement | |
d | mid-span deflection |
modulus of elasticity | |
ft | splitting tensile strength |
H | depth of the specimen |
thickness of clip gauge holder | |
initial fracture toughness | |
unstable fracture toughness | |
cohesive fracture toughness | |
cohesive fracture toughness by experiment | |
cohesive fracture toughness by analytical method | |
Pu | maximum load |
Pini | initial cracking load |
S | span of the specimen |
cohesive stress corresponding to the kink point of bilinear softening law | |
cohesive stress corresponding to crack length x | |
critical value of cohesive force at notch tip | |
crack width corresponding to the kink point of bilinear softening law | |
crack width corresponding to the stress-free point |
References
- Roy, D.M. Alkali-activated cements opportunities and challenges. Cem. Concr. Res. 1999, 29, 249–254. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, P.V.; Roy, D. Alkali-Activated Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Tzevelekou, T.; Lampropoulou, P.; Giannakopoulou, P.P.; Rogkala, A.; Koutsovitis, P.; Koukouzas, N.; Petrounias, P. Valorization of Slags Produced by Smelting of Metallurgical Dusts and Lateritic Ore Fines in Manufacturing of Slag Cements. Appl. Sci. 2020, 10, 4670. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Yang, T.; Li, L.; Zhu, H.; Wang, H. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag. J. Clean. Prod. 2017, 141, 463–471. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C.; Khayat, K.H.; Pan, S.-Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, J.; Wang, J.; Wang, C.; Huang, P.; Fang, C. Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials 2019, 12, 1247. [Google Scholar] [CrossRef] [Green Version]
- Bažant, Z.P. Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech. 1984, 110, 518–535. [Google Scholar] [CrossRef]
- Bhowmik, S.; Ray, S. An experimental approach for characterization of fracture process zone in concrete. Eng. Fract. Mech. 2019, 211, 401–419. [Google Scholar] [CrossRef]
- Hillerborg, A.; Modéer, M.; Petersson, P.-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–781. [Google Scholar] [CrossRef]
- Xu, S.; Reinhardt, H.W. Determination of double-determination of double-K criterion for crack propagation in quasi-brittle fracture Part I: Experimental investigation of crack propagation. Int. J. Fract. 1999, 98, 111–149. [Google Scholar] [CrossRef]
- Xu, S.; Reinhardt, H. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. Int. J. Fract. 1999, 98, 151–177. [Google Scholar] [CrossRef]
- Ding, Y.; Dai, J.-G.; Shi, C. Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar. Constr. Build. Mater. 2018, 165, 310–320. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; He, Z. Mechanical and Fracture Properties of Fly Ash Geopolymer Concrete Addictive with Calcium Aluminate Cement. Materials 2019, 12, 2982. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Dai, J.G.; Shi, C. Mechanical properties of alkali-activated concrete: A state-of-the-art review. Constr. Build. Mater. 2016, 127, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Dai, J.G.; Shi, C. Mechanical properties of alkali-activated concrete subjected to impact load. J. Mater. Civ. Eng. 2018, 30, 04018068. [Google Scholar] [CrossRef]
- Yu, K.; Yu, J.; Lu, Z.; Chen, Q. Determination of the softening curve and fracture toughness of high-strength concrete exposed to high temperature. Eng. Fract. Mech. 2015, 149, 156–169. [Google Scholar] [CrossRef]
- Yu, K.; Ding, Y.; Liu, J.; Bai, Y. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC). Cem. Concr. Compos. 2020, 106, 103459. [Google Scholar] [CrossRef]
- Li, L.Z.; Bai, Y.; Yu, K.Q.; Yu, J.T.; Lu, Z.D. Reinforced high-strength engineered cementitious composite (ECC) columns under eccentric compression: Experiment and theoretical model. Eng. Struct. 2019, 198, 109541. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, Y.L. Fracture properties and softening curves of steel fiber-reinforced slag-based geopolymer mortar and concrete. Materials 2018, 11, 1445. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Shi, C.; Li, N. Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr. Build. Mater. 2018, 190, 787–795. [Google Scholar] [CrossRef]
- RILEM. RILEM Technical Recommendations for the Testing and Use of Construction Materials, E and FN SPON; Taylor/Francis: London, UK, 1994; pp. 99–101. [Google Scholar]
- Standard for Test Method of Mechanical Properties in Ordinary Concrete; Chinese National Standard GT/B 50081-2002; China Architecture and Building Press: Beijing, China, 2003.
- Bharatkumar, B.H.; Raghuprasad, B.K.; Ramachandramurthy, D.S.; Narayanan, R.; Gopalakrishnan, S. Effect of fly ash and slag on the fracture characteristics of high performance concrete. Mater. Struct. 2005, 38, 63–72. [Google Scholar] [CrossRef]
- Shi, C.; Xie, P. Interface between cement paste and quartz sand in alkali-activated slag mortars. Cem. Concr. Res. 1998, 28, 887–896. [Google Scholar] [CrossRef]
- San Nicolas, R.; Provis, J.L. Interfacial transition zone in alkali-activated slag concrete. In Proceedings of the 12th International Conference on Recent Advances in Concrete Technology and Sustainability Issues, Prague, Czech Republic, 30 October–2 November 2012. [Google Scholar]
- Atiş, C.D.; Bilim, C.; Çelik, Ö.; Karahan, O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009, 23, 548–555. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Alkali activation of Australian slag cements. Cem. Concr. Res. 1999, 29, 113–120. [Google Scholar] [CrossRef]
- Yang, L.Y.; Jia, Z.J.; Zhang, Y.M.; Dai, J.G. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem. Concr. Compos. 2015, 57, 1–7. [Google Scholar] [CrossRef]
- Petersson, P.E. Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials; Lund Institute of Technology: Lund, Sweden, 1981. [Google Scholar]
- Gopalaratnam, V.S.; Shah, S.P. Softening response of plain concrete in direct tension. ACI J. Proc. 1985, 82, 310–323. [Google Scholar]
- Reinhardt, H.W.; Cornelissen, H.A.; Hordijk, D.A. Tensile tests and failure analysis of concrete. J. Struct. Eng. 1986, 112, 2462–2477. [Google Scholar] [CrossRef]
- Wittmann, F.H.; Rokugo, K.; Brühwiler, E.; Mihashi, H.; Simonin, P. Fracture energy and strain softening of concrete as determined by means of compact tension specimens. Mater. Struct. 1988, 21, 21–32. [Google Scholar] [CrossRef]
- Hillerborg, A. The theoretical basis of a method to determine the fracture energy GF of concrete. Mater. Struct. 1985, 18, 291–296. [Google Scholar] [CrossRef]
- C F M Code. Comite Euro-International du Beton. Bull. Inf. 1993, 213, 214. [Google Scholar]
- Roelfstra, P.E.; Wittmann, F.H. Numerical method to link strain softening with failure of concrete. In Fracture Toughness and Fracture Energy of Concrete; Elsevier: Lausanne, Switzerland, 1986. [Google Scholar]
- Su, R.K.L.; Chen, H.H.N.; Kwan, A.K.H. Incremental displacement collocation method for the evaluation of tension softening curve of mortar. Eng. Fract. Mech. 2012, 88, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Slowik, V.; Villmann, B.; Bretschneider, N.; Villmann, T. Computational aspects of inverse analyses for determining softening curves of concrete. Comput. Methods Appl. Mech. Eng. 2006, 195, 7223–7236. [Google Scholar] [CrossRef]
- Duan, K.; Hu, X.; Wittmann, F.H. Boundary effect on concrete fracture and non-constant fracture energy distribution. Eng. Fract. Mech. 2003, 70, 2257–2268. [Google Scholar] [CrossRef]
- Xu, S.; Reinhardt, H.W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens. Int. J. Fract. 1999, 98, 179–193. [Google Scholar] [CrossRef]
CaO | Al2O3 | SiO2 | SO3 | P2O5 | MgO | Na2O | K2O | TiO2 | |
---|---|---|---|---|---|---|---|---|---|
GGBFS | 33.3 | 16.9 | 33.4 | 2.35 | 3.77 | 7.0 | 2.0 | 0.16 | 0.61 |
PC | 64.5 | 5.30 | 21.9 | 2.03 | – | 1.51 | 0.19 | 0.62 | – |
Cement (kg/m3) | Fine Aggregate (kg/m3) | Coarse Aggregate (kg/m3) | Water (kg/m3) | w/c | SP | SR | |
---|---|---|---|---|---|---|---|
PCM30 | 600 | 1200 | – | 300 | 0.5 | – | – |
PCM50 | 700 | 1155 | – | 245 | 0.35 | 0.09% | – |
PCM70 | 850 | 1010 | – | 240 | 0.3 | 0.16% | – |
PCC30 | 350 | 776 | 1164 | 210 | 0.6 | – | 0.4 |
PCC50 | 380 | 795 | 1192 | 133 | 0.35 | 0.42% | 0.4 |
PCC70 | 420 | 782 | 1172 | 126 | 0.3 | 0.50% | 0.4 |
n (%) | Ms | Slag kg/m3 | Fine Aggregate kg/m3 | Coarse Aggregate kg/m3 | Water kg/m3 | Alkali Activator | w/b | SR | ||
---|---|---|---|---|---|---|---|---|---|---|
Sodium Silicate Solution (kg/m3) | Sodium Hydroxide (kg/m3) | |||||||||
SGM30 | 3 | 1.5 | 783 | 1174 | – | 276 | 109 | 18 | 0.44 | – |
SGM50 | 4 | 1.5 | 783 | 1174 | – | 253 | 145 | 24 | 0.44 | – |
SGM70 | 5 | 1.5 | 783 | 1174 | – | 254 | 182 | 30 | 0.44 | – |
SGC30 | 3 | 1.5 | 350 | 746 | 1120 | 127 | 49 | 8 | 0.45 | 0.4 |
SGC50 | 4 | 1.5 | 380 | 724 | 1087 | 127 | 71 | 11 | 0.45 | 0.4 |
SGC70 | 4.5 | 2 | 420 | 694 | 1041 | 117 | 117 | 11 | 0.45 | 0.4 |
Pu (kN) | Pini (kN) | Pini/Pu | CMODc (μm) | CTODc (μm) | GF (N/m) | E (GPa) | ac (mm) | |
---|---|---|---|---|---|---|---|---|
PCC30 | 2.39 | 1.37 | 57.1% | 48.07 | 20.52 | 127.1 | 23.4 | 60.82 |
PCC50 | 3.24 | 1.99 | 61.2% | 57.25 | 28.41 | 173.8 | 26.6 | 62.28 |
PCC70 | 3.56 | 2.96 | 83.0% | 62.01 | 30.78 | 177.2 | 29.2 | 63.52 |
SGC30 | 2.99 | 1.54 | 51.6% | 68.49 | 32.50 | 177.3 | 22.1 | 63.65 |
SGC50 | 3.40 | 1.70 | 49.8% | 72.85 | 32.95 | 183.4 | 24.2 | 63.20 |
SGC70 | 3.43 | 1.73 | 50.3% | 67.13 | 29.39 | 207.9 | 24.9 | 62.31 |
PCM30 | 1.94 | 1.79 | 92.0% | 78.43 | 28.61 | 101.0 | 14.4 | 65.91 |
PCM50 | 2.21 | 2.02 | 91.5% | 82.76 | 35.24 | 120.8 | 16.1 | 65.88 |
PCM70 | 2.41 | 2.25 | 93.4% | 72.02 | 29.88 | 119.1 | 18.5 | 64.71 |
SGM30 | 1.79 | 1.55 | 86.4% | 83.05 | 37.75 | 125.9 | 11.3 | 64.16 |
SGM50 | 2.13 | 1.82 | 85.4% | 75.15 | 34.35 | 99.5 | 12.8 | 62.55 |
SGM70 | 2.14 | 1.88 | 87.7% | 67.81 | 30.38 | 91.9 | 13.7 | 61.09 |
ft | ω0 | σs | ωs | ft | ω0 | σs | ωs | ||
---|---|---|---|---|---|---|---|---|---|
PCC30 | 3.20 | 0.269 | 0.269 | 0.0468 | SGC30 | 3.56 | 0.284 | 0.245 | 0.0665 |
PCC50 | 4.58 | 0.245 | 0.656 | 0.0378 | SGC50 | 4.39 | 0.278 | 0.555 | 0.0416 |
PCC70 | 5.29 | 0.227 | 0.762 | 0.0290 | SGC70 | 5.15 | 0.276 | 0.709 | 0.0346 |
PCM30 | 2.16 | 0.0754 | 0.513 | 0.0679 | SGM30 | 2.06 | 0.163 | 0.564 | 0.0624 |
PCM50 | 3.40 | 0.0737 | 0.954 | 0.0429 | SGM50 | 3.45 | 0.123 | 0.866 | 0.0213 |
PCM70 | 3.83 | 0.0654 | 0.978 | 0.0404 | SGM70 | 4.27 | 0.111 | 0.960 | 0.0130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Bai, Y.-L.; Dai, J.-G.; Shi, C.-J. An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar. Materials 2020, 13, 5200. https://doi.org/10.3390/ma13225200
Ding Y, Bai Y-L, Dai J-G, Shi C-J. An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar. Materials. 2020; 13(22):5200. https://doi.org/10.3390/ma13225200
Chicago/Turabian StyleDing, Yao, Yu-Lei Bai, Jian-Guo Dai, and Cai-Jun Shi. 2020. "An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar" Materials 13, no. 22: 5200. https://doi.org/10.3390/ma13225200
APA StyleDing, Y., Bai, Y.-L., Dai, J.-G., & Shi, C.-J. (2020). An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar. Materials, 13(22), 5200. https://doi.org/10.3390/ma13225200