Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Materials Properties
3.2. Wear Behavior
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Podgornik, B.; Sedlaček, M.; Žužek, B.; Guštin, A. Properties of tool steels and their importance when used in a coated system. Coatings 2020, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Wieckowski, W.; Wieczorek, P.; Lacki, J. Investigations of anti-wear coatings in terms of their applicability to tools in the FSW process. Acta Phys. Pol. A 2019, 135, 177–183. [Google Scholar] [CrossRef]
- Rizzo, A.; Goel, S.; Grilli, M.L.; Iglesias, R.; Jaworska, L.; Lapkovskis, V.; Novak, P.; Postolnyi, B.O.; Valerini, D. The critical raw materials in cutting tools for machining applications: A review. Materials 2020, 13, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedulov, V.N. New steel compositions for cold and hot forming tools and their hardening capabilities. Foundry Prod. Metall. 2018, 91, 119–123. [Google Scholar] [CrossRef]
- Roberts, G.A.; Kennedy, R.; Krauss, G. Tool Steels, 5th ed.; ASM International: Materials Park, OH, USA, 1998; ISBN 978-0-87170-599-0. [Google Scholar]
- Özkan, D.; Yilmaz, M.A.; Bakdemir, S.A.; Sulukan, E. Wear and friction behavior of TiB2 thin-film coated AISI52100 steels under the lubricated condition. Tribol. Trans. 2020, 1–12. [Google Scholar] [CrossRef]
- Kaszuba, M.; Widomski, P.; Białucki, P.; Lange, A.; Boryczko, B.; Walczak, M. Properties of new-generation hybrid layers combining hardfacing and nitriding dedicated to improvement in forging tools’ durability. Arch. Civ. Mech. Eng. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, S.; Lee, J.-W.; Li, B.; Wang, Y.; Zhao, D.; Sun, D. Towards hard yet self-lubricious CrAlSiN coatings. J. Alloy. Compd. 2015, 618, 132–138. [Google Scholar] [CrossRef]
- Yan, P.; Wang, X.; Jiao, L. Effect of element contents on friction and wear behaviours of ternary nitride coatings. Ind. Lubr. Tribol. 2016, 68, 696–701. [Google Scholar] [CrossRef]
- Ho, W.-Y.; Hsu, C.-H.; Chen, C.-W.; Wang, D.-Y. Characteristics of PVD-CrAlSiN films after post-coat heat treatments in nitrogen atmosphere. Appl. Surf. Sci. 2011, 257, 3770–3775. [Google Scholar] [CrossRef]
- Premanond, V.; Hato, R.; Sripraserd, J. Wear Resistance Improvement of cold work tool steel by fine shot peening. Mater. Sci. Forum 2018, 939, 3–8. [Google Scholar] [CrossRef]
- Aihua, L.; Jianxin, D.; Haibing, C.; Yangyang, C.; Jun, Z. Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012, 31, 82–88. [Google Scholar] [CrossRef]
- Kumar, S.; Maity, S.R.; Patnaik, L. Friction and tribological behavior of bare nitrided, TiAlN and AlCrN coated MDC-K hot work tool steel. Ceram. Int. 2020, 46, 17280–17294. [Google Scholar] [CrossRef]
- Zappelino, B.F.; de Almeida, E.A.S.; Krelling, A.P.; da Costa, C.E.; Fontana, L.C.; Milan, J.C.G. Tribological behavior of duplex-coating on Vanadis 10 cold work tool steel. Wear 2020, 442–443, 203133:1–203133:15. [Google Scholar] [CrossRef]
- Zhu, Y.; Qu, H.; Luo, M.; He, C.; Qu, J. Dry friction and wear properties of several hard coating combinations. Wear 2020, 456–457, 203352:1–203352:15. [Google Scholar] [CrossRef]
- Puneet, C.; Valleti, K.; Gopal, A.V.; Joshi, S.V. CrAlSiN nanocomposite thin films for high-speed machining applications. Mater. Manuf. Process. 2018, 33, 371–377. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.; Yang, S.; Lin, Y.; Zhang, S.; Cho, T.-Y.; Lee, G.H.; Kwon, S.-C. Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Appl. Surf. Sci. 2015, 351, 803–810. [Google Scholar] [CrossRef]
- Cai, F.; Gao, Y.; Zhang, S.; Zhang, L.; Wang, Q. Gradient architecture of Si containing layer and improved cutting performance of AlCrSiN coated tools. Wear 2019, 424, 193–202. [Google Scholar] [CrossRef]
- He, L.; Chen, L.; Xu, Y. Interfacial structure, mechanical properties and thermal stability of CrAlSiN/CrAlN multilayer coatings. Mater. Charact. 2017, 125, 1–6. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, H.-W.; Lee, Y.-W.; Duh, J.-G. Development of Si-modified CrAlSiN nanocomposite coating for anti-wear application in extreme environment. Surf. Coat. Technol. 2015, 284, 273–280. [Google Scholar] [CrossRef]
- Tritremmel, C.; Daniel, R.; Lechthaler, M.; Polcik, P.; Mitterer, C. Influence of Al and Si content on structure and mechanical properties of arc evaporated Al–Cr–Si–N thin films. Thin Solid Films 2013, 534, 403–409. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.-S.; Chen, X.-Y.; Ho, W.-Y.; Li, W. Comparison of Cutting Performance of router with CrAlSiN and DLC hard coatings. Int. J. Mater. Mech. Manuf. 2019, 7, 124–127. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Krella, A.K.; Czyżniewski, A.; Gilewicz, A.; Gajowiec, G. Experimental study of the influence of deposition of multilayer CrN/CrCN PVD coating on austenitic steel on resistance to cavitation erosion. Coatings 2020, 10, 487. [Google Scholar] [CrossRef]
- Liu, Z.R.; Peng, B.; Xu, Y.X.; Zhang, Q.; Wang, Q.; Chen, L. Influence of Ni-addition on mechanical, tribological properties and oxidation resistance of AlCrSiN coatings. Ceram. Int. 2019, 45, 3735–3742. [Google Scholar] [CrossRef]
- Pujante, J.; Vilaseca, M.; Casellas, D.; Riera, M.D. High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel. Surf. Coatings Technol. 2014, 254, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Szala, M.; Walczak, M.; Pasierbiewicz, K.; Kamiński, M. Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.B.; Pei, W.; Huang, F.; Chen, L. Improved mechanical and thermal properties of CrAlN coatings by Si solid solution. Vacuum 2016, 125, 180–184. [Google Scholar] [CrossRef]
- Sun, S.Q.; Ye, Y.W.; Wang, Y.X.; Liu, M.Q.; Liu, X.; Li, J.L.; Wang, L.P. Structure and tribological performances of CrAlSiN coatings with different Si percentages in seawater. Tribol. Int. 2017, 115, 591–599. [Google Scholar] [CrossRef]
- Wang, L.; Nie, X. Effect of annealing temperature on tribological properties and material transfer phenomena of CrN and CrAlN coatings. J. Mater. Eng. Perform. 2014, 23, 560–571. [Google Scholar] [CrossRef]
- Drnovšek, A.; de Figueiredo, M.R.; Vo, H.; Xia, A.; Vachhani, S.J.; Kolozsvári, S.; Hosemann, P.; Franz, R. Correlating high temperature mechanical and tribological properties of CrAlN and CrAlSiN hard coatings. Surf. Coat. Technol. 2019, 372, 361–368. [Google Scholar] [CrossRef]
- Polcar, T.; Vitu, T.; Sondor, J.; Cavaleiro, A. Tribological performance of CrAlSiN coatings at high temperatures. Plasma Process. Polym. 2009, 6, S935–S940. [Google Scholar] [CrossRef]
- Polcar, T.; Cavaleiro, A. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings—Structure and oxidation. Mater. Chem. Phys. 2011, 129, 195–201. [Google Scholar] [CrossRef]
- Voestalpine Bohler Edelstahl GmbH & Co KG. Cold Work Tool Steel. Available online: Http://www.bohler-edelstahl.com/app/uploads/sites/92/2020/07/productdb/api/k340en_isodur.pdf (accessed on 17 July 2020).
- PN-EN ISO 6506-1:2014-12. Metallic Materials—Brinell Hardness Test—Part 1: Test Method; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- PN-EN ISO 6508-1:2016-10. Metallic Materials—Rockwell Hardness Test—Part 1: Test Method; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- PN-EN ISO 4516-1:2004. Metallic and Other Inorganic Coatings—Vickers and Knopp Microhardness Tests; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- PN-EN ISO 18265:2014-02. Metallic Materials—Conversion of Hardness Values; International Organization for Standardization, BIBC II, Chemin de Blandonnet 8, CP 401, 1214 Vernier: Geneva, Switzerland, 2014. [Google Scholar]
- Walczak, M.; Pasierbiewicz, K.; Szala, M. Adhesion and mechanical properties of TiAlN and AlTiN magnetron sputtered coatings deposited on the DMSL titanium alloy substrate. Acta Phys. Pol. A 2019, 136, 294–298. [Google Scholar] [CrossRef]
- Polcar, T.; Cavaleiro, A. High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surf. Coat. Technol. 2011, 206, 1244–1251. [Google Scholar] [CrossRef]
- Özkan, D.; Erarslan, Y.; Sulukan, E.; Kara, L.; Yılmaz, M.A.; Yağcı, M.B. Tribological behavior of TiAlN, AlTiN, and AlCrN coatings at boundary lubricating condition. Tribol. Lett. 2018, 66, 152:1–152:17. [Google Scholar] [CrossRef]
- Hashmi, S.; Batalha, G.F.; Van Tyne, C.J.; Yilbas, B. Comprehensive Materials Processing; Elsevier Newnes: Oxford, UK, 2014; ISBN 978-0-08-096532-1. [Google Scholar]
- Chang, Y.-Y.; Amrutwar, S. Effect of plasma nitriding pretreatment on the mechanical properties of AlCrSiN-coated tool steels. Materials 2019, 12, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abusuilik, S.B. Pre-, intermediate, and post-treatment of hard coatings to improve their performance for forming and cutting tools. Surf. Coat. Technol. 2015, 284, 384–395. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Wang, Q.; Li, M. A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: I. Microstructure and mechanical properties. Surf. Coat. Technol. 2013, 214, 160–167. [Google Scholar] [CrossRef]
- Szala, M.; Winiarski, G.; Wójcik, Ł.; Bulzak, T. Effect of annealing time and temperature parameters on the microstructure, hardness, and strain-hardening coefficients of 42CrMo4 steel. Materials 2020, 13, 2022. [Google Scholar] [CrossRef]
- Szala, M.; Łatka, L.; Walczak, M.; Winnicki, M. Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals 2020, 10, 856. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, L.; Chen, Z.; Hu, X.; Yan, Z. Investigation of the surface properties and wear properties of AISI H11 steel treated by auxiliary heating plasma nitriding. Coatings 2020, 10, 528. [Google Scholar] [CrossRef]
- Krbata, M.; Eckert, M.; Majerik, J.; Barenyi, I. Wear behaviour of high strength tool steel 90MnCrV8 in contact with Si3N4. Metals 2020, 10, 756. [Google Scholar] [CrossRef]
- Berkowski, L.; Borowski, J.; Rybak, Z. The influence of structure on the results of the nitriding of ledeburitic chromium steels. Part VI. Ion nitriding of NC11LV steel burnishing after hardening on martensitic structure. Obróbka Plast. Met. 2009, 20, 3–14. (In Polish) [Google Scholar]
- Dobrzański, L.A.; Mazurkiewicz, J.; Hajduczek, E.; Madejski, J. Comparison of the thermal fatigue resistance and structure of the 47CrMoWVTiCeZr16-26-8 hot-work tool steel with X40CrMoV5-1 type one. J. Mater. Process. Technol. 2001, 113, 527–538. [Google Scholar] [CrossRef]
Stage Chronologically | Time, min | Stage Temperature, °C | |||
---|---|---|---|---|---|
at the Beginning | Continuous | at the End | |||
Austenitization | preheating | 210 | ambient | 700 | |
soaking | 180 | 700 | |||
reheating | 60 | 700 | 870 | ||
soaking | 180 | 870 | |||
reheating | 45 | 870 | 1030 | ||
soaking | 90 | 1030 | |||
N quenching | 1030 | ambient | |||
Tempering | preheating | 120 | ambient | 505 | |
tempering I | 240 | 505 | |||
air cooling | 505 | ambient | |||
preheating | 120 | ambient | 505 | ||
tempering II | 210 | 505 | |||
air cooling | 505 | ambient | |||
preheating | 120 | ambient | 505 | ||
tempering III | 210 | 505 | |||
air cooling | 505 | ambient | |||
preheating | 120 | ambient | 510 | ||
tempering IV | 240 | 510 | |||
air cooling | 510 | ambient | |||
Nitriding | preheating | 130 | ambient | 450 | |
soaking | 240 | 450 | |||
reheating | 130 | 450 | 540 | ||
nitriding | 2400 | 540 | |||
air cooling | 540 | ambient | |||
PVD 1 | 300 | 445 |
Steel Grade | Content of Element (Fe—Balance), wt. % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | Cr | Mo | Ni | V | W | S | P | |
X155CrVMo12-1 | 1.525 | 0.350 | 0.400 | 12.000 | 1.000 | 0.850 | 0.030 | 0.030 | ||
K340 | 1.100 | 0.900 | 0.400 | 8.300 | 2.100 | 0.500 | ||||
K340 1 | 1.111 | 0.767 | 0.406 | 8.297 | 1.961 | 0.329 | 0.530 | 0.071 | 0.002 | 0.021 |
X40CrMoV5-1 | 0.385 | 1.000 | 0.375 | 5.150 | 1.350 | 1.000 | 0.030 | 0.020 | ||
X37CrMoV5-1 | 0.370 | 1.000 | 0.375 | 5.150 | 1.300 | 0.400 | 0.030 | 0.020 | ||
40CrMnMo7 | 0.400 | 0.300 | 1.450 | 1.950 | 0.200 | 0.030 | 0.030 | |||
90MnCrV8 | 0.900 | 0.250 | 2.000 | 0.350 | 0.125 | 0.030 | 0.030 |
Parameter | Load | Linear Speed | Rotational Diameter |
---|---|---|---|
Unit | N | cm s−1 | mm |
Value | 10 | 10 | 6 |
Steel Grade | Work | Processing Temperature, °C | Hardness | |||||
---|---|---|---|---|---|---|---|---|
Austenitizing | Tempering | PVD | HRC | SD 1, HRC | HV | SD 1, HV | ||
K340/AlCrSiN | cold | 1030 | 505 ÷ 510 | 445 | 1314 | 92 | ||
K340 | cold | 1030 | 505 ÷ 510 | 62.0 | 1.2 | 747 | 25 | |
90MnCrV8 | cold | 1800 | 270 | 58.8 | 0.6 | 669 | 12 | |
X155CrVMo12-1 | cold | 1020 | 270 | 57.0 | 0.2 | 631 | 5 | |
X40CrMoV5-1 | hot | 1000 | 300 | 53.5 | 0.9 | 569 | 14 | |
X37CrMoV5-1 | hot | 1020 | 270 | 51.3 | 0.9 | 533 | 15 | |
40CrMnMo7 | cold | 800 | 270 | 50.3 | 0.8 | 518 | 12 |
Symbol | Concentration | |||
---|---|---|---|---|
Atomic, at. % | SD, at. % | Weight, wt. % | SD, wt. % | |
N | 57.0 | 4.0 | 33.4 | 2.3 |
Al | 23.2 | 1.3 | 26.1 | 1.5 |
Cr | 17.3 | 4.1 | 37.4 | 8.8 |
Si | 2.6 | 0.1 | 3.0 | 0.2 |
Sample Steel | Work | Average Friction Coefficient | Standard Deviation |
---|---|---|---|
X37CrMoV5-1 | hot | 0.89 | 0.06 |
X155CrVMo12-1 | cold | 0.88 | 0.07 |
X40CrMoV5-1 | hot | 0.81 | 0.06 |
K340 | cold | 0.74 | 0.09 |
40CrMnMo7 | cold | 0.71 | 0.04 |
90MnCrV8 | cold | 0.70 | 0.05 |
K340/AlCrSiN | cold | 0.53 | 0.05 |
Sample | Wear Trace Depth, μm | Standard Deviation, μm |
---|---|---|
K340/AlCrSiN | 21.64 | 0.38 |
K340 | 16.02 | 2.70 |
90MnCrV8 | 20.94 | 1.79 |
X40CrMoV5-1 | 21.07 | 1.86 |
X37CrMoV5-1 | 21.54 | 0.83 |
40CrMnMo7 | 27.42 | 1.39 |
X155CrMoV12-1 | 29.34 | 3.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozd, K.; Walczak, M.; Szala, M.; Gancarczyk, K. Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Materials 2020, 13, 4895. https://doi.org/10.3390/ma13214895
Drozd K, Walczak M, Szala M, Gancarczyk K. Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Materials. 2020; 13(21):4895. https://doi.org/10.3390/ma13214895
Chicago/Turabian StyleDrozd, Kazimierz, Mariusz Walczak, Mirosław Szala, and Kamil Gancarczyk. 2020. "Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades" Materials 13, no. 21: 4895. https://doi.org/10.3390/ma13214895
APA StyleDrozd, K., Walczak, M., Szala, M., & Gancarczyk, K. (2020). Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Materials, 13(21), 4895. https://doi.org/10.3390/ma13214895