Microstructure and Porosity Evolution of the Ti–35Zr Biomedical Alloy Produced by Elemental Powder Metallurgy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Niinomi, M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef]
- Zhao, X.; Niinomi, M.; Nakai, M.; Ishimoto, T.; Nakano, T. Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater. Sci. Eng. C 2011, 31, 1436–1444. [Google Scholar] [CrossRef]
- Domingo, J.L. Vanadium and Tungsten Derivatives as Antidiabetic Agents. Biol. Trace Elem. Res. 2002, 88, 97–112. [Google Scholar] [CrossRef]
- Steimann, S.G. Biomaterials; John Wiley & Sons, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Okazaki, Y.; Nishimura, E. Effect of Metal Released from Ti Alloy Wear Powder on Cell Viability. Mater. Trans. 2000, 41, 1247–1255. [Google Scholar] [CrossRef]
- Okazaki, Y.; Rao, S.; Asao, S.; Tateishi, T.; Katsuda, S.; Furuki, Y. Effects of Ti, Al. and V concentrations on cell viability. Mater. Trans. 1998, 39, 1053–1062. [Google Scholar] [CrossRef]
- Khan, M.A.; Williams, R.L.; Williams, D.F. The corrosion behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions. J. Biomed. Mater. Res. 1999, 20, 631–637. [Google Scholar] [CrossRef]
- Boyce, B.F.; Byars, J.; McWilliams, S.; Mocan, M.Z.; Elder, H.Y.; Boyle, I.T.; Junor, B.J. Histological and electron microprobe studies of mineralisation in aluminium-related osteomalacia. J. Clin. Pathol. 1992, 45, 502–508. [Google Scholar]
- Wang, K. The use of titanium for medical applications in the USA. Mater. Sci. Eng. A 1996, 213, 134–137. [Google Scholar] [CrossRef]
- Ho, W.F.; Ju, C.P.; Chern Lin, J.H. Structure and properties of cast binary Ti-Mo alloys. Biomaterials 1999, 20, 2115–2122. [Google Scholar] [CrossRef]
- Ho, W.F. A comparison of tensile properties and corrosion behaviour of cast Ti-7.5Mo with c. P. Ti, Ti–15Mo and Ti–6Al–4V alloys. J. Alloys Compd. 2008, 464, 580–583. [Google Scholar] [CrossRef]
- Dercz, G.; Matuła, I.; Zubko, M.; Kazek-Kęsik, A.; Maszybrocka, J.; Simka, W.; Dercz, J.; Świec, P.; Jendrzejewska, I. Synthesis of porous Ti–50Ta alloy by powder metallurgy. Mater. Charact. 2018, 142, 124–136. [Google Scholar] [CrossRef]
- Dercz, G.; Matuła, I.; Zubko, M.; Liberska, A. Structure Characterization of Biomedical Ti-Mo-Sn Alloy Prepared by Mechanical Alloying Method. Acta Phys. Pol. A 2016, 130, 1029–1032. [Google Scholar] [CrossRef]
- Collings, E.W. Alloying. In Introduction to Titanium Alloy Design; Water, J.L., Jackson, M.R., Sims, C.T., Eds.; ASM International: Metals Park, OH, USA, 1988; pp. 257–370. [Google Scholar]
- Cheng, C.H.; Hsu, H.C.; Wu, S.C.; Wang, H.W.; Ho, W.F. Effects of chromium addition on structure and mechanical properties of Ti-10Zr alloy. J. Alloys Compd. 2009, 484, 524–528. [Google Scholar] [CrossRef]
- Chen, C.J.; Huang, J.C.; Chou, H.S.; Lai, Y.H.; Chang, L.W.; Du, X.H.; Chu, J.P.; Nieh, T.G. On the amorphous and nanocrystalline Zr-Cu and Zr-Ti co-sputtered thin films. J. Alloys Compd. 2009, 483, 337–340. [Google Scholar] [CrossRef]
- Wang, W.; Zhan, P.; Xie, Z.; Li, Z.; Zhang, Z. Mechanical property improvement by texture control of magnetron co-sputtered Zr-Ti films. J. Appl. Phys. 2014, 115, 043524. [Google Scholar] [CrossRef]
- Oliveira, N.T.C.; Biaggio, S.R.; Rocha-Filho, R.C.; Bocchi, N. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media. J. Biomed. Mater. Res. Part A 2005, 74, 397–407. [Google Scholar] [CrossRef]
- Ho, W.F.; Chen, W.K.; Wu, S.C.; Hsu, H.C. Structure, mechanical properties, and grindability of dental Ti-Zr alloys. J. Mater. Sci. Mater. Med. 2008, 19, 3179–3186. [Google Scholar] [CrossRef]
- Matuła, I.; Dercz, G.; Barczyk, J. Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications. Mater. Sci. Technol. 2020, 36, 972–977. [Google Scholar] [CrossRef]
- Saldaña, L.; Méndez-Vilas, A.; Jiang, L.; Multigner, M.; González-Carrasco, J.L.; Pérez-Prado, M.T.; González-Martín, M.L.; Munuera, L.; Vilaboa, N. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 2007, 28, 4343–4354. [Google Scholar] [CrossRef]
- Sherepo, K.M.; Red’ko, I.A. The use of zirconium for implants in traumatology and orthopedics. Med. Tekh. 2004, 2, 22–24. [Google Scholar]
- Gehrke, P.; Dhom, G.; Brunner, J.; Wolf, D.; Degidi, M.; Piattelli, A. Zirconium implant abutments: Fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int. 2006, 37, 19–26. [Google Scholar] [PubMed]
- Thomsen, P.; Larsson, C.; Ericson, L.E.; Sennerby, L.; Lausmaa, J.; Kasemo, B. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J. Mater. Sci. Mater. Med. 1997, 8, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Cabrini, R.L.; Guglielmotti, M.B.; Almagro, J.C. Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent. 1993, 2, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Guglielmotti, M.B.; Guerrero, C.; Cabrini, R.L. Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. Acta Odontol. Latinoam. 1997, 10, 11–23. [Google Scholar]
- Kulakov, O.B.; Doktorov, A.A.; D’iakova, S.V.; Denisov-Nikol’skiĭ, I.I.; Grötz, K.A. Experimental study of osseointegration of zirconium and titanium dental implants. Morfologiia 2005, 127, 52–55. [Google Scholar]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Massalski, B.; Thaddeus, L. Binary Alloy Phase Diagrams, 2nd ed.; Massalski, T.B., Okamoto, H., Subramanian, P.R., Massalski, B., Thaddeus, L., Eds.; ASM International: Metals Park, OH, USA, 1990. [Google Scholar]
- Hsu, H.C.; Wu, S.C.; Sung, Y.C.; Ho, W.F. The structure and mechanical properties of as-cast Zr-Ti alloys. J. Alloys Compd. 2009, 488, 279–283. [Google Scholar] [CrossRef]
- Correa, D.R.N.; Vicente, F.B.; Donato, T.A.G.; Arana-Chavez, V.E.; Buzalaf, M.A.R.; Grandini, C.R. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications. Mater. Sci. Eng. C 2014, 34, 354–359. [Google Scholar] [CrossRef]
- Oh, I.H.; Nomura, N.; Hanada, S. Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Mater. Trans. 2002, 43, 443–446. [Google Scholar] [CrossRef]
- Bobyn, J.D.; Pilliar, R.M.; Cameron, H.U.; Weatherly, G.C. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 1980, 150, 263–270. [Google Scholar] [CrossRef]
- Pavón, J.J.; Trueba, P.; Rodríguez-Ortiz, J.A.; Torres, Y. Development of new titanium implants with longitudinal gradient porosity by space-holder technique. J. Mater. Sci. 2015, 50, 6103–6112. [Google Scholar] [CrossRef]
- Karanjai, M.; Sundaresan, R.; Rao, G.V.N.; Mohan, T.R.R.; Kashyap, B.P. Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca-P phases. Mater. Sci. Eng. A 2007, 447, 19–26. [Google Scholar] [CrossRef]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structure. J. Appl. Cryst. 1969, 3, 65–69. [Google Scholar] [CrossRef]
- Young, R.A.; Wiles, D.B. Application of the Rietveld method for structure refinement with powder diffraction data. Adv. X-ray Anal. 1980, 24, 1–23. [Google Scholar] [CrossRef]
- Hill, R.J.; Howard, C.J. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 1987, 20, 467–474. [Google Scholar] [CrossRef]
- Dercz, G.; Olszak, D.; Prusik, K.; Pająk, L. Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phase. Adv. Mater. Sci. 2008, 8, 764–768. [Google Scholar]
- Medvedev, A.E.; Molotnikov, A.; Lapovok, R.; Zeller, R.; Berner, S.; Habersetzer, P.; Dalla Torre, F. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material. J. Mech. Behav. Biomed. Mater. 2016, 62, 384–398. [Google Scholar] [CrossRef]
- Han, M.-K.; Hwang, M.-J.; Yang, M.-S.; Yang, H.-S.; Song, H.-J.; Park, Y.-J. Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys. Mater. Sci. Eng. A 2014, 616, 268–274. [Google Scholar] [CrossRef]
- Marker, C.; Shang, S.L.; Zhao, J.C.; Liu, Z.K. Effects of alloying elements on the elastic properties of bcc Ti-X alloys from first-principles calculations. Comput. Mater. Sci. 2018, 142, 215–226. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Zhang, F.; Xu, H. Shape memory behavior in Ti-Zr alloys. Scr. Mater. 2011, 64, 584–587. [Google Scholar] [CrossRef]
- Gain, A.K.; Zhang, L.; Quadir, M.Z. Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders. Mater. Sci. Eng. A 2016, 662, 258–267. [Google Scholar]
- Nomura, N.; Kohama, T.; Oh, I.H.; Hanada, S.; Chiba, A.; Kanehira, M.; Sasaki, K. Mechanical properties of porous Ti–15Mo–5Zr–3Al compacts prepared by powder sintering. Mater. Sci. Eng. C 2005, 25, 330–335. [Google Scholar] [CrossRef]
- Thibon, I.; Ansel, D.; Gloriant, T. Interdiffusion in β-Ti-Zr binary alloys. J. Alloys Compd. 2009, 470, 127–133. [Google Scholar]
- Cordeiro, J.M.; Beline, T.; Ribeiro, A.L.R.; Rangel, E.C.; da Cruz, N.C.; Landers, R.; Faverani, L.P.; Vaz, L.G.; Fais, L.M.G.; Vicente, F.B.; et al. Development of binary and ternary titanium alloys for dental implants. Dent. Mater. 2017, 33, 1244–1257. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Qiao, Y.; Wang, Q.; Jin, G.; Qin, H.; Zhao, Y.; Peng, X.; Zhang, X.; Liu, X. Calcium Plasma Implanted Titanium Surface with Hierarchical Microstructure for Improving the Bone Formation. ACS Appl. Mater. Interfaces 2015, 7, 13053–13061. [Google Scholar] [CrossRef] [PubMed]
- Soboyejo, W.O.; Mercer, C.; Allameh, S.; Nemetski, B.; Marcantonio, N.; Ricci, J.L. Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces. Key Eng. Mater. 2001, 198, 203–230. [Google Scholar] [CrossRef]
- Xie, Y.; Zheng, X.; Huang, L.; Ding, C. Influence of hierarchical hybrid micro/nano-structured surface on biological performance of titanium coating. J. Mater. Sci. 2012, 47, 1411–1417. [Google Scholar]
- Michelle Grandin, H.; Berner, S.; Dard, M. A review of Titanium Zirconium (TiZr) alloys for use in endosseous dental implants. Materials 2012, 5, 1348–1360. [Google Scholar] [CrossRef]
- Tong, Y.X.; Guo, B.; Zheng, Y.F.; Chung, C.Y.; Ma, L.W. Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys. J. Mater. Eng. Perform. 2011, 20, 762–766. [Google Scholar]
- Gerday, A.F.; Bettaieb, M.B.; Duchêne, L.; Clement, N.; Diarra, H.; Habraken, A.M. Material behavior of the hexagonal alpha phase of a titanium alloy identified from nanoindentation tests. Eur. J. Mech. A Solids 2011, 30, 248–255. [Google Scholar] [CrossRef]
- Xie, F.; He, X.; Cao, S.; Mei, M.; Qu, X. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications. Electrochim. Acta 2013, 105, 121–129. [Google Scholar] [CrossRef]
- Xu, Q.; Gabbitas, B.; Matthews, S. Titanium compacts with controllable porosity by slip casting of binary powder mixtures. Powder Technol. 2014, 266, 396–406. [Google Scholar] [CrossRef]
- Saito, T.; Furuta, T. Sintered Powdered Titanium Alloy and Method of Producing the Same. U.S. Patent 5,520,879, 28 May 1996. [Google Scholar]
- Vasconcellos, L.M.R.d.; Leite, D.O.; Oliveira, F.N.d.; Carvalho, Y.R.; Cairo, C.A.A. Evaluation of bone ingrowth into porous titanium implant: Histomorphometric analysis in rabbits. Braz. Oral Res. 2010, 24, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Itälä, A.I.; Ylänen, H.O.; Ekholm, C.; Karlsson, K.H.; Aro, H.T. Pore diameter of more than 100 µm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. 2001, 58, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.N.; Midha, P.S. Computer simulation of morphology and packing behaviour of irregular particles, for predicting apparent powder densities. Comput. Mater. Sci. 1997, 7, 377–383. [Google Scholar] [CrossRef]
- Karlsson, K.; Spring, L. Packing of irregular particles. J. Mater. Sci. 1970, 5, 340–344. [Google Scholar] [CrossRef]
- Lees, S. A model for bone hardness. J. Biomech. 1981, 14, 561–567. [Google Scholar] [CrossRef]
- Wu, W.W.; Zhu, Y.B.; Chen, W.; Li, S.; Yin, B.; Wang, J.Z.; Zhang, X.J.; Liu, G.B.; Hu, Z.S.; Zhang, Y.Z. Bone Hardness of Different Anatomical Regions of Human Radius and its Impact on the Pullout Strength of Screws. Orthop. Surg. 2019, 11, 270–276. [Google Scholar] [CrossRef]
- Ogurkowska, M.B.; Błaszczyk, A. Distribution of Young’s modulus at various sampling points in a human lumbar spine vertebral body. Spine J. 2020, in press. [Google Scholar] [CrossRef]
- Ho, W.F.; Cheng, C.H.; Pan, C.H.; Wu, S.C.; Hsu, H.C. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys. Mater. Sci. Eng. C 2009, 29, 36–43. [Google Scholar] [CrossRef]
Phase | Lattice Parameters | ICDD * | Samples | |||
---|---|---|---|---|---|---|
TZ-250 | TZ-500 | TZ-750 | TZ-1000 | |||
α | a0 (nm) | 0.2951 ** | 0.3013(2) | 0.3011(2) | 0.3006(2) | 0.3005(3) |
c0 (nm) | 0.4683 ** | 0.4783(5) | 0.4780(5) | 0.4773(5) | 0.4772(5) |
Sample | Feret’s Diameter (μm) | Circularity | |||
---|---|---|---|---|---|
Minimum Value | Maximum Value | Average Value | Standard Deviation | Average Value | |
TZ-250 | 2.29 | 218.99 | 14.84 | 18.66 | 0.58 |
TZ-500 | 2.17 | 169.00 | 12.69 | 13.10 | 0.61 |
TZ-750 | 2.17 | 43.44 | 6.53 | 4.41 | 0.70 |
TZ-1000 | 2.17 | 42.86 | 7.44 | 5.64 | 0.70 |
Parameter | Sample | Minimum Value | Maximum Value | Average Value | Standard Deviation |
---|---|---|---|---|---|
ag (µm2) | TZ-250 | 2.03 | 492.58 | 35.06 | 40.99 |
TZ-500 | 2.01 | 496.13 | 33.15 | 44.50 | |
TZ-750 | 2.01 | 474.56 | 21.17 | 30.77 | |
TZ-1000 | 2.03 | 492.58 | 34.85 | 41.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuła, I.; Dercz, G.; Zubko, M.; Maszybrocka, J.; Jurek-Suliga, J.; Golba, S.; Jendrzejewska, I. Microstructure and Porosity Evolution of the Ti–35Zr Biomedical Alloy Produced by Elemental Powder Metallurgy. Materials 2020, 13, 4539. https://doi.org/10.3390/ma13204539
Matuła I, Dercz G, Zubko M, Maszybrocka J, Jurek-Suliga J, Golba S, Jendrzejewska I. Microstructure and Porosity Evolution of the Ti–35Zr Biomedical Alloy Produced by Elemental Powder Metallurgy. Materials. 2020; 13(20):4539. https://doi.org/10.3390/ma13204539
Chicago/Turabian StyleMatuła, Izabela, Grzegorz Dercz, Maciej Zubko, Joanna Maszybrocka, Justyna Jurek-Suliga, Sylwia Golba, and Izabela Jendrzejewska. 2020. "Microstructure and Porosity Evolution of the Ti–35Zr Biomedical Alloy Produced by Elemental Powder Metallurgy" Materials 13, no. 20: 4539. https://doi.org/10.3390/ma13204539
APA StyleMatuła, I., Dercz, G., Zubko, M., Maszybrocka, J., Jurek-Suliga, J., Golba, S., & Jendrzejewska, I. (2020). Microstructure and Porosity Evolution of the Ti–35Zr Biomedical Alloy Produced by Elemental Powder Metallurgy. Materials, 13(20), 4539. https://doi.org/10.3390/ma13204539