Friction and Wear Behavior of Alumina Composites with In-Situ Formation of Aluminum Borate and Boron Nitride
Abstract
1. Introduction
2. Thermodynamics Consideration
3. Materials and Methods
3.1. Sample Preparation
3.2. Characterization and Testing
4. Results and Discussion
4.1. Phase Identification Using X-ray Diffraction
4.2. Densification
4.3. Hardness
4.4. Tribological Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bagde, P.; Sapate, S.G.; Khatirkar, R.K.; Vashishtha, N. Friction and abrasive wear behaviour of Al2O3-13TiO2 and Al2O3-13TiO2+Ni Graphite coatings. Tribol. Int. 2018, 121, 353–372. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Hou, G.; An, Y.; Zhou, H.; Chen, J. Influence of doping graphite on microstructure and tribological properties of plasma sprayed 3Al2O3–2SiO2 coating. Tribol. Int. 2016, 101, 168–177. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Fan, Z.; Yan, J.; Wei, T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 2011, 46, 315–318. [Google Scholar] [CrossRef]
- Zhang, C.; Nieto, A.; Agarwal, A. Ultrathin graphene tribofilm formation during wear of Al2O3–graphene composites. Nanomater. Energy 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Song, J.; Hu, L. Novel Approach to the Fabrication of an Alumina-MoS2 Self-Lubricating Composite via the In Situ Synthesis of Nanosized MoS2. Acs Appl. Mater. Interfaces 2017, 9, 30263–30266. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Y.; Li, S. Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings. Scr. Mater. 2002, 47, 57–61. [Google Scholar] [CrossRef]
- Omrani, E.; Menezes, P.L.; Rohatgi, P. Self-Lubricating Ceramic Matrix Composites in Tribology and Applications of Self-Lubricating Materials; CRC Press: Cleveland, OH, USA, 2017. [Google Scholar]
- Kasar, A.K.; Menezes, P.L. Synthesis and recent advances in tribological applications of graphene. Int. J. Adv. Manuf. Technol. 2018, 97, 3999–4019. [Google Scholar] [CrossRef]
- Jianxin, D.; Tongkun, C.; Lili, L. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel. J. Eur. Ceram. Soc. 2005, 25, 1073–1079. [Google Scholar] [CrossRef]
- Quan, H.; Wang, X.; Zhang, L.; Liu, N.; Feng, S.; Chen, Z.; Hou, L.; Wang, Q.; Liu, X.; Zhao, J.; et al. Stability to moisture of hexagonal boron nitride films deposited on silicon by RF magnetron sputtering. Thin Solid Film. 2017, 642, 90–95. [Google Scholar] [CrossRef]
- Bolelli, G.; Candeli, A.; Lusvarghi, L.; Manfredini, T.; Denoirjean, A.; Valette, S.; Ravaux, A.; Meillot, E. “Hybrid” plasma spraying of NiCrAlY+Al2O3+h-BN composite coatings for sliding wear applications. Wear 2017, 378, 68–81. [Google Scholar] [CrossRef]
- Woydt, M.; Skopp, A.; Wäsche, R. Ceramic-ceramic composite materials with improved friction and wear properties. In Proceedings of 4th International Symposium on Ceramic Materials and Components for Engines; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Skopp, A.; Woydt, M. Ceramic and ceramic composite materials with improved friction and wear properties. Tribol. Trans. 1995, 38, 233–242. [Google Scholar] [CrossRef]
- Wei, D.; Meng, Q.; Jia, D. Mechanical and tribological properties of hot-pressed h-BN/Si3N4 ceramic composites. Ceram. Int. 2006, 32, 549–554. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Yu, Z.; Planche, M.-P.; Peyraut, F.; Liao, H.; Lasalle, A.; Allimant, A.; Montavon, G. Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating. J. Eur. Ceram. Soc. 2018, 38, 4512–4522. [Google Scholar] [CrossRef]
- Zhang, G.J.; Ohji, T. In situ reaction synthesis of silicon carbide–boron nitride composites. J. Am. Ceram. Soc. 2001, 84, 1475–1479. [Google Scholar] [CrossRef]
- Kovalčíková, A.; Balko, J.; Balázsi, C.; Hvizdoš, P.; Dusza, J. Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites. J. Eur. Ceram. Soc. 2014, 34, 3319–3328. [Google Scholar] [CrossRef]
- Cai, D.; Yang, Z.; Duan, X.; He, P.; Wang, S.; Yuan, J.; Rao, J.; Jia, D.; Zhou, Y. Inhibiting crystallization mechanism of h-BN on α-cordierite in BN-MAS composites. J. Eur. Ceram. Soc. 2016, 36, 905–909. [Google Scholar] [CrossRef]
- Elkady, O.A.; Abu-Oqail, A.; Ewais, E.M.; El-Sheikh, M. Physico-mechanical and tribological properties of Cu/h-BN nanocomposites synthesized by PM route. J. Alloy. Compd. 2015, 625, 309–317. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Beppu, Y.; Ohji, T. Reaction mechanism and microstructure development of strain tolerant in situ SiC–BN composites. Acta Mater. 2001, 49, 77–82. [Google Scholar] [CrossRef]
- Carrapichano, J.; Gomes, J.; Silva, R. Tribological behaviour of Si3N4–BN ceramic materials for dry sliding applications. Wear 2002, 253, 1070–1076. [Google Scholar] [CrossRef]
- Coblenz, W.S.; LEWIS, D., III. In Situ Reaction of B2O3 with AlN and/or Si3N4 to Form BN-Toughened Composites. J. Am. Ceram. Soc. 1988, 71, 1080–1085. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, G.; Jin, Z. Machinable Al2O3/BN composite ceramics with strong mechanical properties. Mater. Res. Bull. 2002, 37, 1401–1409. [Google Scholar] [CrossRef]
- Kurita, S.; Zeng, Z.-Q.; Takebe, H.; Morinaga, K. Reaction and phase relations in the AlN–B2O3 system. Mater. Trans. Jim 1994, 35, 258–261. [Google Scholar] [CrossRef][Green Version]
- Valefi, M.; de Rooij, M.; Mokhtari, M.; Schipper, D.J. Modelling of a thin soft layer on a self-lubricating ceramic composite. Wear 2013, 303, 178–184. [Google Scholar] [CrossRef]
- Fu, J.; Li, M.; Liu, G.; Ma, S.; Zhu, X.; Ma, C.; Cheng, D.; Yan, Z. Robust ceramic based self-lubricating coating on Al–Si alloys prepared via PEO and spin-coating methods. Wear 2020, 458, 203405. [Google Scholar] [CrossRef]
- Ran, S.; Winnubst, L.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.-W.; Schipper, D.J. Dry-sliding self-lubricating ceramics: CuO doped 3Y-TZP. Wear 2009, 267, 1696–1701. [Google Scholar] [CrossRef]
- Lee, H.; Zerbetto, S.; Colombo, P.; Pantano, C. Glass–ceramics and composites containing aluminum borate whiskers. Ceram. Int. 2010, 36, 1589–1596. [Google Scholar] [CrossRef]
- Erdemir, A.; Bindal, C. Formation and self-lubricating mechanisms of boric acid on borided steel surfaces. Surf. Coat. Technol. 1995, 77, 443–449. [Google Scholar]
- Mirmiran, S.; Tsukruk, V.V.; Erdemir, A. Nano-Tribological and Wear Behavior of Boric Acid Solid Lubricant©. Tribol. Trans. 1999, 42, 180–185. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, J.; Ando, M.; Ohji, T.; Kanzaki, S. Reactive synthesis of alumina-boron nitride composites. Acta Mater. 2004, 52, 1823–1835. [Google Scholar] [CrossRef]
- Balcı, S.; Sezgi, N.A.; Eren, E. Boron oxide production kinetics using boric acid as raw material. Ind. Eng. Chem. Res. 2012, 51, 11091–11096. [Google Scholar] [CrossRef]
- Top Seiko Co., Ltd. Ceramics List. Available online: https://top-seiko.com/works/material-cat/ceramics/ (accessed on 26 September 2020).
- Mukhanov, V.; Kurakevych, O.; Solozhenko, V. On the hardness of boron (III) oxide. arXiv preprint 2011, arXiv:1101.2965. [Google Scholar] [CrossRef]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database–an open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-J.; Ohji, T. Effect of BN content on elastic modulus and bending strength of SiC-BN in situ composites. J. Mater. Res. 2000, 15, 1876–1880. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Yang, J.-F.; Ohji, T. In situ Si3N4–SiC–BN composites: Preparation, microstructures and properties. Mater. Sci. Eng. A 2002, 328, 201–205. [Google Scholar] [CrossRef]
- Menezes, P.L.; Nosonovsky, M.; Ingole, S.P.; Kailas, S.V.; Lovell, M.R. Tribology for Scientists and Engineers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Czichos, H.; Becker, S.; Lexow, J. International multilaboratory sliding wear tests with ceramics and steel. Wear 1989, 135, 171–191. [Google Scholar] [CrossRef]
- Luo, Q.; Oluwafemi, O.; Kitchen, M.; Yang, S. Tribological properties and wear mechanisms of DC pulse plasma nitrided austenitic stainless steel in dry reciprocating sliding tests. Wear 2017, 376, 1640–1651. [Google Scholar] [CrossRef]
- Benamor, A.; Kota, S.; Chiker, N.; Haddad, A.; Hadji, Y.; Natu, V.; Abdi, S.; Yahi, M.; Benamar, M.E.; Sahraoui, T. Friction and wear properties of MoAlB against Al2O3 and 100Cr6 steel counterparts. J. Eur. Ceram. Soc. 2019, 39, 868–877. [Google Scholar] [CrossRef]
Composite Designation | Wt.% | |||
---|---|---|---|---|
B2O3 | AlN | Al2O3 | Resulted h-BN | |
A10 | 10 | 11.75 | 78.25 | 7.11 |
B10 | 20 | 11.75 | 68.25 | 7.11 |
A20 | 20 | 23.55 | 56.45 | 14.25 |
B20 | 40 | 23.55 | 36.45 | 14.25 |
Composite | Density (gm/cm3) | |
---|---|---|
Theoretical | Sintered | |
A10 | 3.65 | 1.59 |
B10 | 4.03 | 1.43 |
A20 | 3.40 | 1.47 |
B20 | 3.11 | 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasar, A.K.; Menezes, P.L. Friction and Wear Behavior of Alumina Composites with In-Situ Formation of Aluminum Borate and Boron Nitride. Materials 2020, 13, 4502. https://doi.org/10.3390/ma13204502
Kasar AK, Menezes PL. Friction and Wear Behavior of Alumina Composites with In-Situ Formation of Aluminum Borate and Boron Nitride. Materials. 2020; 13(20):4502. https://doi.org/10.3390/ma13204502
Chicago/Turabian StyleKasar, Ashish K., and Pradeep L. Menezes. 2020. "Friction and Wear Behavior of Alumina Composites with In-Situ Formation of Aluminum Borate and Boron Nitride" Materials 13, no. 20: 4502. https://doi.org/10.3390/ma13204502
APA StyleKasar, A. K., & Menezes, P. L. (2020). Friction and Wear Behavior of Alumina Composites with In-Situ Formation of Aluminum Borate and Boron Nitride. Materials, 13(20), 4502. https://doi.org/10.3390/ma13204502