The Influence of Alternative Fillers on the Adhesive Properties of Mastics Fabricated with Red Mud
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fillers
2.2. Bitumen
2.3. Mastics
• 40% RM • 40% LS • 40% DL • 40% FA • 20% RM + 20% LS • 20% RM + 20% DL • 20% RM + 20% FA | • 20% RM • 20% LS • 20% DL • 20% FA • 10% RM + 10% LS • 10% RM + 10% DL • 10% RM + 10% FA |
2.4. Adhesion Test
3. Results
3.1. Mastic Characterization
3.2. Wettability
3.3. Adhesive Test Results
3.4. General Analysis of the Results
4. Conclusions
- The granitic rocks used in this work have electronegativity and hydrophilicity characteristics, which reduce the bonding properties between the bitumen and the aggregates in the presence of water, especially for mastics with dolomite.
- Calcium-based fillers potentialize the effects of the additive.
- The alkalinity and hydrophobicity attributed to the fly ash as well as the presence of CaO and SO3 in its composition are the main factors responsible for improving the affinity between the aggregates and bitumen.
- The additive used in this study has an apolar nature that acted in the maltene phase, weakening the asphaltene inter-cluster interactions and softening the bitumen.
- The viscosity of the mastics plays an important role in the adhesive properties.
- The lower alkalinity and the MgO within the dolomite composition significantly influence its affinity toward the bitumen.
- Larger amounts of red mud (≥40 vol % of bitumen) help to improve the hydrophobicity of mastics and, therefore, their adhesive properties.
- Red mud in smaller quantities (≤20 vol % of bitumen) has little influence over the adhesive properties of mastics.
- The combination of different fillers provides distinct mastic properties.
- The influence of fillers in the mastics is proportional to the amount inserted.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lima, M.S.S.; Thives, L.P.; Haritonovs, V.; Bajars, K. Red mud application in construction industry: Review of benefits and possibilities. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 251, p. 12033. [Google Scholar]
- Lima, M.S.S.; Thives, L.P.; Haritonovs, V. (Eds.) Damage Induced by Moisture in Bituminous Mixtures Fabricated with Red Mud and Stone Dust as Filler: Methodology for Environmental Analysis. 13th ISAP Conference on Asphalt Pavements 2018. Fortaleza, Ceara, Brazil. Available online: http://icongresso.ikone.itarget.com.br/arquivos/trabalhos_completos/ikone/3/175_23012018_101046.pdf (accessed on 10 January 2020).
- Tan, R.B.; Khoo, H.H. An LCA study of a primary aluminum supply chain. J. Clean. Prod. 2005, 13, 607–618. [Google Scholar] [CrossRef]
- Hind, A.R.; Bhargava, S.K.; Grocott, S.C. The surface chemistry of Bayer process solids: A review. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 146, 359–374. [Google Scholar] [CrossRef]
- Kavas, T. Use of boron waste as a fluxing agent in production of red mud brick. Build. Environ. 2006, 41, 1779–1783. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, B. Development of unsintered construction materials red mud wastes pro-duced in the sintering alumina process. Constr. Build. Mater. 2008, 22, 2299–2307. [Google Scholar] [CrossRef]
- Sglavo, V.M.; Maurina, S.; Conci, A.; Salviati, A.; Carturan, G.; Cocco, G. Bauxite ‘red mud’ in the ceramic industry. Part 2: Production of clay-based ceramics. J. Eur. Ceram. Soc. 2000, 20, 245–252. [Google Scholar] [CrossRef]
- Yalçın, N.; Sevinç, V. Utilization of bauxite waste in ceramic glazes. Ceram. Int. 2000, 26, 485–493. [Google Scholar] [CrossRef]
- Dodoo-Arhin, D.; Konadu, D.S.; Annan, E.; Buabeng, F.P.; Yaya, A. Fabrication and characterisation of Ghanaian bauxitered mud-clay com-posite bricks for construction applications. Am. J. Mater. Sci. 2013, 3, 110–119. [Google Scholar]
- Feng, Y.-L.; Yu, L.-J.; Gao, J.-P.; Wang, P.; Luo, Q.-W.; Huang, B.; Wang, M. Study on the preparation and properties of red mud unburned brick. Mater. Res. Innov. 2015, 19, S8–S297. [Google Scholar] [CrossRef]
- Yang, H.; Chen, C.; Pan, L.; Lu, H.; Sun, H.; Hu, X. Preparation of double-layer glass-ceramic/ceramic tile from bauxite tail-ings and red mud. J. Eur. Ceram. Soc. 2009, 29, 1887–1894. [Google Scholar] [CrossRef]
- Qiu, X.R.; Qi, Y.Y. Reasonable utilization of red mud in the cement industry. Cem. Technol. 2011, 6, 103–105. [Google Scholar]
- Manhin, S.O.B.; Remya, C.P.; Salja, P.A.; Shifal, K.S. Red mud concrete. Int. Res. J. Eng. Technol. (IRJET) 2016, 3, 2582–2585. [Google Scholar]
- Liu, R.-X.; Poon, C.-S. Utilization of red mud derived from bauxite in self-compacting concrete. J. Clean. Prod. 2016, 112, 384–391. [Google Scholar] [CrossRef]
- Jitsangiam, P.; Nikraz, H.R. Sustainable use of coarse bauxite residue for alternative roadway con-struction materials. Aust. J. Civ. Eng. 2013, 11, 1–12. [Google Scholar]
- Lima, M.S.S. Avaliacao do Emprego de Lama Vermelha no Desemoenho a Deformacao Permanente de Misturas Asfalticas a Quente. Master’s Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2015. [Google Scholar]
- Antunes, V.; Freire, A.C.; Quaresma, L.; Micaelo, R. Influence of the geometrical and physical properties of filler in the filler–bitumen interaction. Constr. Build. Mater. 2015, 76, 322–329. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Quaresma, L.; Micaelo, R. Effect of the chemical composition of fillers in the filler–bitumen interaction. Constr. Build. Mater. 2016, 104, 85–91. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Quaresma, L.; Micaelo, R. Evaluation of waste materials as alternative sources of filler in asphalt mixtures. Mater. Struct. 2017, 50, 84. [Google Scholar]
- Grabowski, W.; Wilanowicz, J. The structure of mineral fillers and their stiffening properties in filler-bitumen mastics. Mater. Struct. 2008, 41, 793–804. [Google Scholar] [CrossRef]
- Vassaux, S.; Gaudefroy, V.; Boulangé, L.; Pévère, A.; Mouillet, V.; Barragan-Montero, V. Towards a better understanding of wetting regimes at the interface asphalt/aggregate during warm-mix process of asphalt mixtures. Constr. Build. Mater. 2017, 133, 182–195. [Google Scholar] [CrossRef]
- British Standards Institution (BSI). EN 1097-6: Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption; British Standards Institution: London, UK, 2013. [Google Scholar]
- British Standards Institution (BSI). EN 1097-4: Tests for Mechanical and Physical Properties of Aggregates—Part 4: Determination of the Voids of Dry Compacted Filler; British Standards Institution: London, UK, 2008. [Google Scholar]
- British Standards Institution (BSI). BS EN ISO 10523. Water Quality—Determination of pH; British Standards Institution: London, UK, 2015. [Google Scholar]
- International Organization for Standardization. ISO 12677: Chemical Analysis of Refractory Products by X-ray Fluorescence (XRF)—Fused Cast-Bead Method; International Organization for Standardization: London, UK, 2011. [Google Scholar]
- British Standards Institution (BSI). EN 1427: Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method; British Standards Institution: London, UK, 2015. [Google Scholar]
- British Standards Institution (BSI). EN 1426: Bitumen and Bituminous Binders—Determination of Needle Penetration; British Standards Institution: London, UK, 2015. [Google Scholar]
- British Standards Institution (BSI). EN 12593: Bitumen and Bituminous Binders—Determination of the Frass Breaking Point; British Standards Institution: London, UK, 2015. [Google Scholar]
- British Standards Institution (BSI). EN 12595: Bitumen and Bituminous Binders—Determination of Kinematic Viscosity; British Standards Institution: London, UK, 2014. [Google Scholar]
- British Standards Institution (BSI). EN 12596: Bitumen and Bituminous Binders—Determination of Dynamic Viscosity by Vacuum Capillary; British Standards Institution: London, UK, 2014. [Google Scholar]
- British Standards Institution (BSI). EN 13398: Bitumen and Bituminous Binders—Determination of the Elastic Recovery of Modified Bitumen; British Standards Institution: London, UK, 2017. [Google Scholar]
- British Standards Institution (BSI). EN 126907: Bitumen and Bituminous Binders—Determination of the Resistance to Hardening under Influence of Heat and Air—Part 1: RTFOT Method; British Standards Institution: London, UK, 2014. [Google Scholar]
- Departamento Nacional de Infraestrutura de Transportes (DNIT). DNIT 031/06-ES: Pavimentos Flexíveis—Concreto Asfáltico. Rio de janeiro, Brazil, 2018. Available online: http://ipr.dnit.gov.br/normas-e-manuais/normas/especificacao-de-servicos-es/dnit031_2006_es.pdf (accessed on 10 January 2020). (In Portuguese)
- British Standards Institution (BSI). EN 12697-35: Bituminous Mixtures. Test Methods. Laboratory Mixing; British Standards Institution: London, UK, 2016. [Google Scholar]
- British Standards Institution (BSI). EN 12697-11: Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Determination of the Affinity between Aggregate and Bitumen; British Standards Institution: London, UK, 2012. [Google Scholar]
- Pfieffer, J.P.; Van Doormaal, P.M. The Rheological Properties of Asphaltic Bitumen. J. Inst. Pet. Technol. 1936, 22, 414–424. [Google Scholar]
- Rossi, C.O.; Teltayev, B.; Angelico, R. Adhesion Promoters in Bituminous Road Materials: A Review. Appl. Sci. 2017, 7, 524. [Google Scholar] [CrossRef] [Green Version]
- Salomão, R.; Bittencourt, L.R.; Pandolfelli, V. Aspects of magnesium oxide hydratation in refractory castables compositions. Ceramica 2006, 52, 146–150. [Google Scholar] [CrossRef]
- Yang, S. Interfacial Phenomena and Wettability of Reservoir Rocks. In Springer Mineralogy; Springer: Berlin, Germany, 2016; pp. 317–363. [Google Scholar]
- Woszuk, A.; Bandura, L.; Franus, W. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 2019, 235, 493–502. [Google Scholar] [CrossRef]
- Bautista, E.G.; Flickinger, J.; Saha, R.; Flores-Vivian, I.; Faheem, A.F.; Sobolev, K. Effect of Coal Combustion Products on high temperature performance of asphalt mastics. Constr. Build. Mater. 2015, 94, 572–578. [Google Scholar] [CrossRef]
- Calandra, P.; Caputo, P.; De Santo, M.P.; Todaro, L.; Liveri, V.T.; Rossi, C.O. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr. Build. Mater. 2019, 199, 288–297. [Google Scholar] [CrossRef]
- Soenen, H.; Lu, X.; Laukkanen, O.-V. Oxidation of bitumen: Molecular characterization and influence on rheological properties. Rheol. Acta 2016, 55, 315–326. [Google Scholar] [CrossRef]
- Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
Characterization Tests | RM | DL | LS | FA | Standards |
---|---|---|---|---|---|
BET-Specific Surface Area (m2/g) | 8.3 | 4.1 | 2.5 | 2.9 | - |
Density (g/cm3) | 2.8 | 2.7 | 2.7 | 2.9 | EN 1097-6 [22] |
Rigden Voids (g/cm3) | 44.8 | 30.9 | 32.6 | 42.5 | EN 1097-4 [23] |
Ph | 12.4 | 6.76 | 7.8 | 13.1 | ISO 10523 [24] |
Size, d10 (μm) | 1.1 | 2.4 | 2.5 | 4.1 | - |
Size, d50 (μm) | 7.2 | 10.1 | 10.8 | 55.2 | - |
Size, d90 (μm) | 120.1 | 38.1 | 39.6 | 63.0 | - |
Chemical Composition | RM % | DL % | LS % | FA % |
---|---|---|---|---|
Fe2O3 | 29.86 | 0.34 | - | 1.15 |
Al2O3 | 21.96 | 0.64 | 0.54 | 5.03 |
SiO2 | 18.31 | 2.50 | 3.0 | 46.6 |
Na2O | 11.33 | 0.82 | - | 1.22 |
TiO2 | 5.50 | - | - | - |
CaO | 1.53 | 31.0 | 51.81 | 24.68 |
MgO | 0.23 | 17.0 | 0.50 | 2.11 |
MnO | 0.17 | - | - | - |
P2O5 | 0.10 | - | - | - |
SO3 | 0.09 | - | 0.11 | 8.26 |
K2O | 0.07 | 0.76 | - | 4.35 |
Cr2O3 | 0.04 | - | - | - |
Characterization Tests | 50/70 | Standard |
---|---|---|
Softening Point, °C | 49 | EN 1427 [26] |
Penetration, 0.1 mm | 59 | EN 1426 [27] |
Frass breaking point, °C | −15 | EN 12593 [28] |
Kinematic viscosity 135 °C, mm2/s | 483.4 | EN 12595 [29] |
Dynamic viscosity 60 °C, Pa.s | 60 | EN 12596 [30] |
Ductility | 11.8% | EN 13398 [31] |
RTFOT | - | EN 12607 [32] |
Softening Point, °C | 55 | EN 1427 [26] |
Penetration, 0.1 mm | 36 | EN 1426 [27] |
Mastic/Bitumen | 0.0 wt % | 0.3 wt % | 0.5 wt % |
---|---|---|---|
50/70 | × | × | × |
40% RM | × | ||
40% LS | × | × | |
40% DL | × | × | × |
40% FA | × | ||
20% RM + 20% LS | × | × | |
20% RM + 20% DL | × | × | × |
20% RM + 20% FA | × | ||
20% RM | × | × | × |
20% LS | × | × | |
20% DL | × | × | × |
20% FA | × | ||
10% RM + 10% LS | × | × | |
10% RM + 10% DL | × | × | × |
10% RM + 10% FA | × | × |
Mastic/Bitumen | Contact Angle (°) |
---|---|
Bitumen 50/70 | 87.5 |
20% RM | 83.5 |
20% LS | 81.7 |
20% DL | 78.3 |
20% FA | 76.6 |
10% RM + 10% LS | 80.8 |
10% RM + 10% DL | 70.5 |
10% RM + 10% FA | 79.0 |
40% RM | 100.5 |
40% LS | 76.3 |
40% DL | 56.3 |
40% FA | 72.1 |
20% RM + 20% LS | 83.5 |
20% RM + 20% DL | 94.6 |
20% RM + 20% FA | 75.2 |
When? | Classification | Mastics |
---|---|---|
All columns above the superior line | >(better) | 20% FA |
40% RM | ||
40% FA | ||
20% RM + 20% FA | ||
At least two columns (average and maximum) above the average line | ≥(better or equal) | 10% RM + 10% FA |
20% RM + 20% LS | ||
At least one column (maximum) in the average line | =(equal) | 20% LS |
10% RM + 10% LS | ||
20% RM + 20% DL | ||
The ‘maximum’ column in the inferior line | ≤(worse or equal) | 20% DL |
40% LS | ||
10% RM + 10% DL | ||
All columns under minimum line | <(worse) | 20% RM |
40% DL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, M.S.S.; Thives, L.P.; Haritonovs, V.; Gschösser, F. The Influence of Alternative Fillers on the Adhesive Properties of Mastics Fabricated with Red Mud. Materials 2020, 13, 484. https://doi.org/10.3390/ma13020484
Lima MSS, Thives LP, Haritonovs V, Gschösser F. The Influence of Alternative Fillers on the Adhesive Properties of Mastics Fabricated with Red Mud. Materials. 2020; 13(2):484. https://doi.org/10.3390/ma13020484
Chicago/Turabian StyleLima, Mayara S. Siverio, Liseane P. Thives, Viktors Haritonovs, and Florian Gschösser. 2020. "The Influence of Alternative Fillers on the Adhesive Properties of Mastics Fabricated with Red Mud" Materials 13, no. 2: 484. https://doi.org/10.3390/ma13020484