Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Heer, W.A.; Chatelain, A.; Ugarte, D.A. Carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, O. Electron field emission from carbon nanotubes. Comptes Rendus Phys. 2003, 4, 1021–1033. [Google Scholar] [CrossRef]
- Milne, W.I.; Teo, K.B.K.; Amaratunga, G.A.J.; Legagneux, P.; Gangloff, L.; Schnell, J.-P.; Semet, V.; Binh, V.T.; Groeningd, O. Carbon nanotubes as field emission sources. J. Mater. Chem. 2004, 14, 933–943. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Wu, Q.; Liu, M.; Zhou, R.; Chen, Z. Fast microfocus X-ray tube based on carbon nanotube array. J. Vac. Sci. Technol. B 2019, 37, 051203. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, L.; Li, Z.Y.; Serbun, P.; Kargin, N.; Labunov, V.; Shulitski, B.; Kashko, I.; Grapov, D.; Gorokh, G. Field emission cathodes based on structured carbon nanotube arrays. World J. Hepatol. 2017, 4, 8–27. [Google Scholar]
- Lee, N.S.; Chung, D.S.; Han, I.T.; Kang, J.H.; Choi, Y.S.; Kim, H.Y.; Park, S.H.; Jin, Y.W.; Yi, W.K.; Yun, M.J.; et al. Application of carbon nanotubes to field emission displays. Diam. Relat. Mater. 2001, 10, 265–270. [Google Scholar] [CrossRef]
- Wang, Q.H.; Setlur, A.A.; Lauerhaas, J.M.; Dai, J.Y.; Seelig, E.W. A nanotube based field emission flat panel display. Appl. Phys. Lett. 1998, 72, 2912–2913. [Google Scholar] [CrossRef]
- Lee, S.; Oda, T.; Shin, P.-K.; Lee, B.-J. Chemical modification of carbon nanotube for improvement of field emission property. Microelectron. Eng. 2009, 86, 2110–2113. [Google Scholar] [CrossRef]
- Thapa, A.; Jungjohann, K.L.; Wang, X.; Li, W. Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification. J. Mater. Sci. 2020, 55, 2101–2117. [Google Scholar] [CrossRef]
- Sreekanth, M.; Ghosh, S.; Biswas, P.; Kumar, S.; Srivastava, P. Improved field emission from indium decorated multi-walled carbon nanotubes. Appl. Surf. Sci. 2016, 383, 84–89. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.-H.; Shanov, V.; Tu, Y.; Subramaniam, S.; Schulz, M.J. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition. J. Phys. Chem. B 2006, 110, 23920–23925. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.N. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2010, 2, 1306–1323. [Google Scholar]
- Castro, C.; Pinault, M.; Coste-Leconte, S.; Porterat, D.; Bendiab, N.; Reynaud, C.; Mayne-L’Hermite, M. Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition. Carbon 2010, 48, 3807–3816. [Google Scholar] [CrossRef]
- Seah, C.-M.; Chai, S.-P.; Mohamed, A.R. Synthesis of aligned carbon nanotubes. Carbon 2011, 49, 4613–4635. [Google Scholar] [CrossRef]
- Kurenya, A.G.; Gorodetskiy, D.V.; Arkhipov, V.E.; Okotrub, A.V. Evaluation of the optimal carrier gas flow rate for the carbon nanotubes growth. Tech. Phys. Lett. 2013, 39, 3. [Google Scholar] [CrossRef]
- Fedorovskaya, E.O.; Bulusheva, L.G.; Kurenya, A.G.; Asanov, I.P.; Rudina, N.A.; Funtov, K.O.; Lyubutin, I.S.; Okotrub, A.V. Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method. Electrochim. Acta 2014, 139, 165–172. [Google Scholar] [CrossRef]
- Gorodetskiy, D.V.; Kurenya, A.G.; Gusel’nikov, A.V.; Kanygin, M.A.; Prokhorova, S.A.; Bulusheva, L.G.; Okotrub, A.V. Field emission characteristics of periodically structured carbon nanotube arrays. J. Nanoelectron. Optoelectron. 2013, 8, 52–57. [Google Scholar] [CrossRef]
- Zhi, C.Y.; Bai, X.D.; Wang, E.G. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 2002, 81, 1690–1962. [Google Scholar] [CrossRef]
- Jones, J.G.; Waite, A.R.; Muratore, C.; Voevodin, A.A. Nitrogen and hydrogen plasma treatments of multiwalled carbon nanotubes. J. Vac. Sci. Technol. B 2008, 26, 995–1000. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, W.; Liang, J.; Wang, Z.; Xia, Y.; Lei, D.; Ren, X.; Yao, N.; Zhang, B. The changes of morphology, structure and optical properties from carbon nanotubes treated by hydrogen plasma. Mater. Chem. Phys. 2008, 108, 82–87. [Google Scholar] [CrossRef]
- Yu, K.; Zhu, Z.; Xu, M.; Li, Q.; Lu, W. Electron field emission from soluble carbon nanotube films treated by hydrogen plasma. Chem. Phys. Lett. 2003, 373, 109–114. [Google Scholar] [CrossRef]
- Yu, K.; Zhu, Z.; Li, Q.; Lu, W. Electronic properties and field emission of carbon nanotube films treated by hydrogen plasma. Appl. Phys. A Mater. 2003, 77, 811–817. [Google Scholar] [CrossRef]
- Wang, S.; Sellin, P.J.; Lian, J.; Özsan, E.; Chang, S. Improvement of electron field emission in patterned carbon nanotubes by high temperature hydrogen plasma treatment. Curr. Nanosci. 2009, 5, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Lei, D.; Wang, W.; Liang, J.; Wang, Z.; Yao, N.; Zhang, B. Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method. Appl. Surf. Sci. 2008, 254, 1700–1704. [Google Scholar] [CrossRef]
- Yua, K.; Zhua, Z.; Zhanga, Y.; Lia, Q.; Wanga, W.; Luoa, L.; Yub, X.; Mac, H.; Lid, Z.; Feng, T. Change of surface morphology and field emission property of carbon nanotube films treated using a hydrogen plasma. Appl. Surf. Sci. 2004, 225, 380–388. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, T.; Yu, W.; Liu, X.; Wang, X.; Li, Q. Enhancement of field emission from hydrogen plasma processed carbon nanotubes. Diam. Relat. Mater. 2004, 13, 54–59. [Google Scholar] [CrossRef]
- Abdia, Y.; Mohajerzadeha, S.; Koohshorkhia, J.; Robertsonb, M.D.; Andrei, C.M. A plasma enhanced chemical vapor deposition process to achieve branched carbon nanotubes. Carbon 2008, 46, 1611–1625. [Google Scholar] [CrossRef]
- Tung, F.-K.; Yoshimura, M.; Ueda, K.; Ohira, Y.; Tanji, T. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 2008, 254, 7750–7754. [Google Scholar] [CrossRef]
- Li, Y.; Ji, K.; Duan, Y.; Meng, G.; Dai, Z. Effect of hydrogen concentration on the growth of carbon nanotube arrays for gecko-inspired adhesive applications. Coatings 2017, 7, 221. [Google Scholar] [CrossRef]
- Brodoceanu, D.; Bauer, C.T.; Kroner, E.; Arzt, E.; Kraus, T. Hierarchical bioinspired adhesive surfaces—A review. Bioinspiration Biomim. 2016, 11, 051001. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Vankar, V.D.; Kumar, V. Effect of hydrogen plasma treatment on the growth and microstructures of multiwalled carbon nanotubes. Nano Micro Lett. 2010, 2, 42–48. [Google Scholar] [CrossRef]
- Choi, W.S.; Choi, S.-H.; Hong, B.; Lim, D.-G.; Yang, K.-J.; Lee, J.-H. Effect of hydrogen plasma pretreatment on growth of carbon nanotubes by MPECVD. Mater. Sci. Eng. C 2006, 26, 1211–1214. [Google Scholar] [CrossRef]
- Zhang, M.-C.; Guo, G.-C.; Wang, R.-Z.; Cui, Y.-L.; Feng, X.-Y.; Wang, B.-R. Coupling enhanced growth by nitrogen and hydrogen plasma of carbon nanotubes. CrystEngComm 2019, 21, 4653–4660. [Google Scholar] [CrossRef]
- Il’in, O.I.; Il’ina, M.V.; Rudyk, N.N.; Fedotov, A.A.; Ageev, O.A. Vertically Aligned Carbon Nanotubes Production by PECVD. In Perspective of Carbon Nanotubes; IntechOpen: London, UK, 2019; pp. 1–17. [Google Scholar]
- Choi, H.; Shin, Y.J.; Cha, S.I.; Kang, I.H.; Bahng, W. Enhanced field-emission capacity by density control of a CNT cathode using post-plasma treatment. Solid State Commun. 2013, 171, 50–54. [Google Scholar] [CrossRef]
- Gusel’nikov, A.V.; Safronov, A.V.; Kurenya, A.G.; Arkhipov, V.E.; Bulgarian, S.G.; Ivanov, A.E.; Kvashnin, A.G.; Okotrub, A.V. The automation of a CVD-reactor for the synthesis of vertically oriented carbon nanotube arrays. Instrum. Exp. Tech. 2018, 61, 482–485. [Google Scholar] [CrossRef]
- Kudashov, A.G.; Kurenya, A.G.; Okotrub, A.V.; Gusel’nikov, A.V.; Danilovich, V.S.; Bulusheva, L.G. Synthesis and structure of films consisting of carbon nanotubes oriented normally to the substrate. Tech. Phys. 2007, 52, 1627–1632. [Google Scholar] [CrossRef]
- Sedelnikova, O.V.; Korovin, E.Y.; Dorozhkin, K.V.; Kanygin, M.A.; Arkhipov, V.E.; Shubin, Y.V.; Zhuravlev, V.A.; Suslyaev, V.I.; Bulusheva, L.G.; Okotrub, A.V. Iron-filled multi-walled carbon nanotubes for terahertz applications: Effects of interfacial polarization, screening and anisotropy. Nanotechnology 2018, 29, 174003. [Google Scholar] [CrossRef]
- Polyakov, O.V.; Gorodetskii, D.V.; Okotrub, A.V. The effect of number of carbon atoms in a molecular precursor on the crystallite size in diamond films prepared by plasma_enhanced chemical_vapor deposition. Tech. Phys. Lett. 2013, 39, 501–504. [Google Scholar] [CrossRef]
- Shirley, D.A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Doniach, S.; Sunjic, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 1970, 3, 285–291. [Google Scholar] [CrossRef]
- Lyubutin, I.S.; Anosova, O.A.; Frolov, K.V.; Sulyanov, S.N.; Okotrub, A.V.; Kudashov, A.G.; Bulusheva, L.G. Iron nanoparticles in aligned arrays of pure and nitrogen-doped carbon nanotubes. Carbon 2012, 50, 2628–2634. [Google Scholar] [CrossRef]
- Behr, M.J.; Gaulding, E.A.; Mkhoyan, K.A.; Aydil, E.S. Hydrogen etching and cutting of multiwall carbon nanotubes. J. Vac. Sci. Technol. B 2010, 28, 1187–1194. [Google Scholar] [CrossRef][Green Version]
- Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux. Carbon 2018, 137, 527–532. [Google Scholar] [CrossRef]
- Hanson, R.L. Plasma quenching reactions with laser pyrolysis of graphite and coal in helium or hydrogen. Carbon 1978, 16, 159–162. [Google Scholar] [CrossRef]
- Vietzke, E.; Philipps, V. Hydrocarbon formation on carbon surfaces facing a hydrogen plasma. Fusion Technol. 1989, 15, 108–117. [Google Scholar] [CrossRef]
- Blume, R.; Rosenthal, D.; Tessonnier, J.-P.; Li, H.; KnopGericke, A.; Schlçgl, R. Characterizing graphitic carbon with X-ray photoelectron spectroscopy: A step-by-step approach. ChemCatChem 2015, 7, 2871–2881. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Bulusheva, L.G.; Okotrub, A.V.; Kanygin, M.A.; Gorodetskiy, D.V.; Asanov, I.P.; Vyalikh, D.V.; Puzyr, A.P.; Bondar, V.S. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Sci. Rep. 2015, 5, 9379. [Google Scholar] [CrossRef]
- Zhan, D.; Ni, Z.; Chen, W.; Sun, L.; Luo, Z.; Lai, L.; Yu, T.; Wee, A.T.S.; Shen, Z. Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49, 1362–1366. [Google Scholar] [CrossRef]
- Popov, K.M.; Fedoseeva, Y.V.; Kokhanovskaya, O.A.; Razd′yakonova, G.I.; Smirnov, D.A.; Bulusheva, L.G.; Okotrub, A.V. Functional composition and electrochemical characteristics of oxidized nanosized carbon. J. Struct. Chem. 2017, 58, 1187. [Google Scholar] [CrossRef]
- Fedorovskaya, E.O.; Bulusheva, L.G.; Kurenya, A.G.; Asanov, I.P.; Okotrub, A.V. Effect of oxidative treatment on the electrochemical properties of aligned multi-walled carbon nanotubes. Russ. J. Electrochem. 2016, 52, 441–448. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Duda, T.A.; Kurenya, A.G.; Gusel’nikov, A.V.; Zhuravlev, K.S.; Vilkov, O.Y.; Bulusheva, L.G.; Okotrub, A.V. An X-ray spectroscopy study of CdS nanoparticles formed by the Langmuir-Blodgett technique on the surface of carbon nanotube arrays. J. Struct. Chem. 2017, 58, 876–884. [Google Scholar] [CrossRef]
- Momose, Y.; Tsuruya, K.; Sakurai, T.; Nakayama, K. Photoelectron emission and XPS studies of real iron surfaces subjected to scratching in air, water, and organic liquids. Surf. Interface Anal. 2016, 48, 202–211. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Fedoseeva, Y.V.; Kurenya, A.G.; Vyalikh, D.V.; Okotrub, A.V. The role of defects in carbon nanotube walls in deposition of CdS nanoparticles from a chemical bath. J. Phys. Chem. C 2015, 119, 25898–25906. [Google Scholar] [CrossRef]
- Bruhwiler, P.; Maxwell, A.; Puglia, C.; Nilsson, A.; Andersson, S.; Martensson, N. π* and σ* Excitons in C1s-absorption of graphite. Phys. Rev. Lett. 1995, 74, 614–617. [Google Scholar] [CrossRef]
- Cancado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectrodcopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Quinlan, R.A.; Cai, M.; Outlaw, R.A.; Butler, S.M.; Miller, J.R.; Mansour, A.N. Investigation of defects generated in vertically oriented graphene. Carbon 2013, 64, 92–100. [Google Scholar] [CrossRef]
- Kanygin, M.A.; Okotrub, A.V.; Bulusheva, L.G.; Vilkov, O.Y.; Hata, K. Revealing distortion of carbon nanotube walls via angle-resolved x-ray spectroscopy. Curr. Appl. Phys. 2015, 15, 1111–1116. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Belavin, V.V.; Kudashov, A.G.; Vyalikh, D.V.; Molodtsov, S.L. Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra. J. Exp. Theor. Phys. 2008, 107, 517–525. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Kanygin, M.A.; Kurenya, A.G.; Kudashov, A.G.; Bulusheva, L.G.; Molodtsov, S.L. NEXAFS detection of graphitic layers formed in the process of carbon nanotube arrays synthesis. Nucl. Instrum. Methods Phys. Res. B 2009, 603, 115–118. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Kanygin, M.A.; Sedelnikova, O.V.; Gusel’nikov, A.V.; Kotosonov, A.S.; Bulusheva, L.G. Interaction of ultrasoft X-rays with arrays of aligned carbon nanotubes. J. Nanophotonics 2010, 4, 041655. [Google Scholar] [CrossRef]
- Kanygin, M.A.; Okotrub, A.V.; Gusel’nikov, A.V.; Kurenya, A.G. Features of inelastic interaction of X-ray radiation with aligned carbon nanotube films. J. Nanoelectron. Optoelectron. 2012, 7, 60–64. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Belavin, V.V.; Bulusheva, L.G.; Kudashov, A.G.; Vyalikh, D.V.; Molodtsov, S.L. X-ray spectroscopy characterization of carbon nanotube film texture. In Electronic Properties of Novel Nanostructures; Kuzmany, H., Fink, J., Mehring, M., Roth, S., Eds.; AIP Conference Proceedings, Melville; AIP: New York, NY, USA, 2005; Volume 786, pp. 150–153. [Google Scholar]
- Belavin, V.V.; Okotrub, A.V.; Bulusheva, L.G.; Kotosonov, A.S.; Vyalykh, D.V.; Molodtsov, S.L. Determining misorientation of graphite grains from the angular dependence of x-ray absorption spectra. J. Exp. Theor. Phys. 2006, 103, 604–610. [Google Scholar] [CrossRef]
- Arkhipov, V.E.; Smirnov, A.L.; Grachev, G.N.; Bagayev, S.N.; Gusel’nikov, A.V.; Bulusheva, L.G.; Okotrub, A.V. Continuous synthesis of aligned carbon nanotube arrays on copper substrates using laser-activated gas jet. Appl. Phys. Lett. 2018, 113, 223102. [Google Scholar] [CrossRef]
- Gorodetskiy, D.V.; Shevchenko, S.N.; Gusel’nikov, A.V.; Okotrub, A.V. A memristive model for graphene emitters: Hysteresis and self-crossing. Phys. Status Solidi B 2020, 257, 2000020. [Google Scholar] [CrossRef]
- Shiraishi, M.; Ata, M. Work function of carbon nanotubes. Carbon 2001, 39, 1913–1917. [Google Scholar] [CrossRef]
- Lim, S.C.; Jeong, H.J.; Kim, K.S.; Lee, I.B.; Bae, D.J.; Lee, Y.H. Extracting independently the work function and field enhancement factor from thermal-field emission of multi-walled carbon nanotube tips. Carbon 2005, 43, 2801–2807. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L.E.; Kim, K.S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430–3434. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorodetskiy, D.V.; Gusel’nikov, A.V.; Kurenya, A.G.; Smirnov, D.A.; Bulusheva, L.G.; Okotrub, A.V. Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties. Materials 2020, 13, 4420. https://doi.org/10.3390/ma13194420
Gorodetskiy DV, Gusel’nikov AV, Kurenya AG, Smirnov DA, Bulusheva LG, Okotrub AV. Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties. Materials. 2020; 13(19):4420. https://doi.org/10.3390/ma13194420
Chicago/Turabian StyleGorodetskiy, Dmitriy V., Artem V. Gusel’nikov, Alexander G. Kurenya, Dmitry A. Smirnov, Lyubov G. Bulusheva, and Alexander V. Okotrub. 2020. "Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties" Materials 13, no. 19: 4420. https://doi.org/10.3390/ma13194420
APA StyleGorodetskiy, D. V., Gusel’nikov, A. V., Kurenya, A. G., Smirnov, D. A., Bulusheva, L. G., & Okotrub, A. V. (2020). Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties. Materials, 13(19), 4420. https://doi.org/10.3390/ma13194420