# An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Additive Manufacturing Processes

#### 2.1. Extrusion

#### 2.2. Photopolymerization

#### 2.3. Material Jetting

#### 2.4. Laminated Object Manufacturing (LOM)

#### 2.5. Powder Bed Fusion (PBF)

#### 2.6. Directed Energy Deposition (DED)

## 3. Numerical Simulation of SLM

#### 3.1. Melt Pool Behavior and Heat Transfer

#### 3.2. Surface Quality, Part Geometrical Stability and Residual Stresses

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform.
**2014**, 23, 1917–1928. [Google Scholar] [CrossRef] - Zeng, K.; Pal, D.; Stucker, B. A review of thermal analysis methods in laser sintering and selective laser melting. In Proceedings of the Solid Freeform Fabrication Symposium Austin, Austin, TX, USA, 6–8 August 2012; Volume 60, pp. 796–814. [Google Scholar]
- Brusa, E.; Sesana, R.; Ossola, E. Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications. Proc. Struct. Integr.
**2017**, 5, 753–760. [Google Scholar] [CrossRef] [Green Version] - Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. J. Aerosp. Eng.
**2015**, 229, 2132–2147. [Google Scholar] [CrossRef] - Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution. J. Alloy. Compd.
**2014**, 583, 404–409. [Google Scholar] [CrossRef] - Leal, R.; Barreiros, F.M.; Alves, L.; Romeiro, F.; Vasco, J.C.; Santos, M.; Marto, C. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol.
**2017**, 92, 1671–1676. [Google Scholar] [CrossRef] - Horn, T.J.; Harrysson, O.L. Overview of current additive manufacturing technologies and selected applications. Sci. Prog.
**2012**, 95, 255–282. [Google Scholar] [CrossRef] - Yavari, M.R.; Cole, K.D.; Rao, P. Thermal modeling in metal additive manufacturing using graph theory. J. Manuf. Sci. Eng.
**2019**, 141, 071007. [Google Scholar] [CrossRef] - Schoinochoritis, B.; Chantzis, D.; Salonitis, K. Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. J. Eng. Manuf.
**2017**, 231, 96–117. [Google Scholar] [CrossRef] - Cao, L.; Sun, F.; Chen, T.; Tang, Y.; Liao, D. Quantitative prediction of oxide inclusion defects inside the casting and on the walls during cast-filling processes. Int. J. Heat Mass Transf.
**2018**, 119, 614–623. [Google Scholar] [CrossRef] - Cao, L.; Liao, D.; Sun, F.; Chen, T. Numerical simulation of cold-lap defects during casting filling process. Int. J. Adv. Manuf. Technol.
**2018**, 97, 2419–2430. [Google Scholar] [CrossRef] - Galati, M.; Iuliano, L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf.
**2018**, 19, 1–20. [Google Scholar] [CrossRef] - Zhang, X.; Yocom, C.J.; Mao, B.; Liao, Y. Microstructure evolution during selective laser melting of metallic materials: A review. J. Laser Appl.
**2019**, 31, 031201. [Google Scholar] [CrossRef] - Mishra, A.K.; Kumar, A. Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V. Opt. Laser Technol.
**2019**, 11, 227–239. [Google Scholar] [CrossRef] - Thomas, D.S.; Gilbert, S.W. Costs and cost effectiveness of additive manufacturing. NIST Spec. Publ.
**2014**, 1176, 12. [Google Scholar] - Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol.
**2016**, 83, 389–405. [Google Scholar] [CrossRef] [Green Version] - Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J.
**2014**, 20, 192–204. [Google Scholar] [CrossRef] - Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy. Rapid Prototyp. J.
**2015**, 21, 250–261. [Google Scholar] [CrossRef] - Serdeczny, M.P.; Comminal, R.; Pedersen, D.B.; Spangenberg, J. Numerical simulations of the mesostructure formation in material extrusion additive manufacturing. Addit. Manuf.
**2019**, 28, 419–429. [Google Scholar] [CrossRef] - Lee, H.; Lim, C.H.J.; Low, M.J.; Tham, N.; Murukeshan, V.M.; Kim, Y.J. Lasers in additive manufacturing: A review. Int. J. Precis. Eng. Manuf.-GT
**2017**, 4, 307–322. [Google Scholar] [CrossRef] - Wong, K.V.; Hernandez, A. A review of additive manufacturing. Int. Sch. Res. Not.
**2012**. [Google Scholar] [CrossRef] [Green Version] - Kim, H.; Choi, J.W.; Wicker, R. Scheduling and process planning for multiple material stereolithography. Rapid Prototyp. J.
**2010**, 16, 232–240. [Google Scholar] [CrossRef] - Stampfl, J.; Baudis, S.; Heller, C.; Liska, R.; Neumeister, A.; Kling, R.; Ostendorf, A.; Spitzbart, M. Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng.
**2008**, 18, 125014. [Google Scholar] [CrossRef] - Laura, M.Y.; Leipzig, N.D.; Shoichet, M.S. Promoting neuron adhesion and growth. J. Mater. Today
**2008**, 11, 36–43. [Google Scholar] - Deckers, J.; Vleugels, J.; Kruth, J.P. Additive manufacturing of ceramics: A review. J. Ceram. Sci. Technol.
**2014**, 5, 245–260. [Google Scholar] - Kęsy, A.; Kotliński, J. Mechanical properties of parts produced by using polymer jetting technology. Arch. Civ. Mech. Eng.
**2010**, 10, 37–50. [Google Scholar] [CrossRef] - Blanco, D.; Fernandez, P.; Noriega, A. Nonisotropic experimental characterization of the relaxation modulus for PolyJet manufactured parts. J. Mater. Res.
**2014**, 29, 1876–1882. [Google Scholar] [CrossRef] - Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz.
**2012**, 55, 155–162. [Google Scholar] [CrossRef] - Gebhardt, A. Laser Manufacturing Processes. In Understanding Additive Manufacturing; Hanser Publications: Munich, Germany, 2011; pp. 31–64. [Google Scholar]
- Mekonnen, B.G.; Bright, G.; Walker, A. A study on state of the art technology of laminated object manufacturing (LOM). In CAD/CAM, Robotics and Factories of the Future; Springer: New Delhi, India, 2016; pp. 207–216. [Google Scholar]
- Thomas, P.A.; Aahlada, P.K.; Kiran, N.S.; Ivvala, J. A review on transition in the manufacturing of mechanical components from conventional techniques to rapid casting using rapid prototyping. Mater. Today
**2018**, 5, 11990–12002. [Google Scholar] [CrossRef] - Meier, C.; Penny, R.W.; Zou, Y.; Gibbs, J.S.; Hart, A.J. Thermophysical phenomena in metal additive manufacturing by selective laser melting: Fundamentals, modeling, simulation and experimentation. arXiv
**2017**, arXiv:1709.09510. [Google Scholar] [CrossRef] - King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchik, A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev.
**2015**, 2, 041304. [Google Scholar] [CrossRef] - Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf.
**2014**, 1, 87–98. [Google Scholar] [CrossRef] - Heigel, J.; Michaleris, P.; Reutzel, E. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit. Manuf.
**2015**, 5, 9–19. [Google Scholar] [CrossRef] - Williams, S.W. Wire+ arc additive manufacturing. Mater. Sci. Technol.
**2016**, 32, 641–647. [Google Scholar] [CrossRef] [Green Version] - Kurzynowski, T.; Chlebus, E.; Kuźnicka, B.; Reiner, J. Parameters in selective laser melting for processing metallic powders. SPIE
**2012**, 8239, 823914. [Google Scholar] - Spears, T.G.; Gold, S.A. In-process sensing in selective laser melting (SLM) additive manufacturing. SPIE
**2016**, 5, 16–40. [Google Scholar] [CrossRef] [Green Version] - Roberts, I.A.; Wang, C.J.; Esterlein, R.; Stanford, M.; Mynors, D.J. A three-dimensional finite element analysis of the. temperature field during laser melting of metal powders in additive layer. manufacturing. Int. J. Mach. Tools Manuf.
**2009**, 49, 916–923. [Google Scholar] [CrossRef] - Zhang, D.Q.; Cai, Q.Z.; Liu, J.H.; Zhang, L.; Li, R.D. Select laser melting of W–Ni–Fe powders: Simulation and. experimental study. Int. J. Adv. Manuf. Technol.
**2010**, 51, 649–658. [Google Scholar] [CrossRef] - Hussein, A.; Hao, L.; Yan, C.; Everson, R. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des.
**2013**, 52, 638–647. [Google Scholar] [CrossRef] - Ferrar, B.; Mullen, L.; Jones, E.; Stamp, R.; Sutcliffe, C.J. Gas flow effects on selective laser melting (SLM) manufacturing performance. J. Mater. Process. Technol.
**2012**, 212, 355–364. [Google Scholar] [CrossRef] - Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater.
**2016**, 108, 36–45. [Google Scholar] [CrossRef] [Green Version] - Matthews, M.J.; Guss, G.; Khairallah, S.A.; Rubenchik, A.M.; Depond, P.J.; King, W.E. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater.
**2016**, 114, 33–42. [Google Scholar] [CrossRef] [Green Version] - Li, R.; Shi, Y.; Liu, J.; Yao, H.; Zhang, W. Effects of processing parameters on the temperature field of selective laser melting metal powder. Powder Metall. Met. Ceram.
**2009**, 48, 186–195. [Google Scholar] [CrossRef] - Li, Y.; Gu, D. Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Addit. Manuf.
**2014**, 1, 99–109. [Google Scholar] [CrossRef] - Alimardani, M.; Toyserkani, E.; Huissoon, J.P. A 3D dynamic numericalapproach for temperature and thermal stress distributions in multilayer lasersolid freeform fabrication process. Opt. Lasers Eng.
**2007**, 45, 1115–1130. [Google Scholar] [CrossRef] - Labudovic, M.; Hu, D.; Kovacevic, R. A three-dimensional model for direct laser metal powder. deposition and rapid prototyping. J. Mater. Sci.
**2003**, 1, 35–49. [Google Scholar] [CrossRef] - Tolochko, N.K.; Arshinov, M.K.; Gusarov, A.V.; Titov, V.I.; Laoui, T.; Froyen, L. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyp. J.
**2003**, 9, 314–326. [Google Scholar] [CrossRef] - Yin, J.; Zhu, H.H.; Ke, L.; Lei, W.J.; Dai, C.; Zuo, D.L. Simulation of tempera-ture distribution in single metallic powder layer for laser micro-sintering. Comput. Mater. Sci.
**2012**, 53, 333–339. [Google Scholar] [CrossRef] - Neela, V.; De, A. Three-dimensional heat transfer analysis of LENS TM process using finite element method. Int. J. Adv. Manuf. Technol.
**2009**, 45, 935. [Google Scholar] [CrossRef] - Wang, L.; Felicelli, S. Process modeling in laser deposition of multilayer SS410 steel. J. Manuf. Sci. Eng.
**2007**, 129, 1028–1034. [Google Scholar] [CrossRef] - Costa, L.; Vilar, R.; Reti, T.; Deus, A.M. Rapid tooling by laser powder deposition: Process simulation using finite element analysis. Acta Mater.
**2005**, 53, 3987–3999. [Google Scholar] [CrossRef] - Wen, S.; Shin, Y.C. Modeling of transport phenomena in direct laser deposition of metal matrix composite. Int. J. Heat Mass Transf.
**2011**, 54, 5319–5326. [Google Scholar] [CrossRef] - Manvatkar, V.; De, A.; DebRoy, T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J. Appl. Phys.
**2014**, 116, 124905. [Google Scholar] [CrossRef] [Green Version] - Gusarov, A.V.; Kruth, J.P. Modelling of radiation transfer in metallic powders at laser treatment. Int. J. Heat Mass Transf.
**2005**, 48, 3423–3434. [Google Scholar] [CrossRef] - Dai, D.; Gu, D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments. Mater. Des.
**2014**, 55, 482–491. [Google Scholar] [CrossRef] - Dai, D.; Gu, D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder. Int. J. Mach. Tools Manuf.
**2015**, 88, 95–107. [Google Scholar] [CrossRef] - Yuan, P.; Gu, D.; Dai, D. Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites. Mater. Des.
**2015**, 82, 46–55. [Google Scholar] [CrossRef] - Cheng, B.; Chou, K. Melt pool evolution study in selective laser melting. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Austin, TX, USA, 10–12 August 2015; pp. 1182–1194. [Google Scholar]
- Van Den Avyle, J.A.; Brooks, J.A.; Powell, A.C. Reducing defects in remelting processes for high-performance alloys. Jom
**1998**, 50, 22–25. [Google Scholar] [CrossRef] - Masmoudi, A.; Bolot, R.; Coddet, C. Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol.
**2015**, 225, 122–132. [Google Scholar] [CrossRef] - Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr. Mater.
**2015**, 105, 14–17. [Google Scholar] [CrossRef] - Saldi, Z.S. Marangoni Driven Free Surface Flows in Liquid Weld Pools. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Chen, X.; Wang, H.X. A calculation model for the evaporation recoil pressure in laser material processing. J. Phys. D Appl. Phys.
**2001**, 34, 2637–2642. [Google Scholar] [CrossRef] - Yuan, W.; Chen, H.; Cheng, T.; Wei, Q. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: Simulation and experiment. Mater. Des.
**2020**, 189, 108542. [Google Scholar] [CrossRef] - Xia, M.; Gu, D.; Yu, G.; Dai, D.; Chen, H.; Shi, Q. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy. Int. J. Mach. Tools Manuf.
**2017**, 116, 96–106. [Google Scholar] [CrossRef] - Loh, L.E.; Chua, C.K.; Yeong, W.Y.; Song, J.; Mapar, M.; Sing, S.L.; Liu, Z.H.; Zhang, D.Q. Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Transf.
**2015**, 80, 288–300. [Google Scholar] [CrossRef] - Huang, Y.; Yang, L.J.; Du, X.Z.; Yang, Y.P. Finite element analysis of thermal behavior of metal powder during selective laser melting. Int. J. Therm. Sci.
**2016**, 104, 146–157. [Google Scholar] [CrossRef] - Liebisch, A.; Merkel, M. On the numerical simulation of the thermal behavior during the selective laser melting process. Mater. Sci. Eng. Technol.
**2016**, 104, 521–529. [Google Scholar] [CrossRef] - Xia, M.; Gu, D.; Yu, G.; Dai, D.; Chen, H.; Shi, Q. Selective laser melting 3D printing of Ni-based superalloy: Understanding thermodynamic mechanisms. Sci. Bull.
**2016**, 61, 1013–1022. [Google Scholar] [CrossRef] [Green Version] - Foroozmehr, A.; Badrossamay, M.; Foroozmehr, E.; Golabi, S.I. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater. Des.
**2016**, 89, 255–263. [Google Scholar] [CrossRef] - Song, B.; Dong, S.; Zhang, B.; Liao, H.; Coddet, C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater. Des.
**2012**, 35, 120–125. [Google Scholar] [CrossRef] - Yang, T.; Liu, T.; Liao, W.; MacDonald, E.; Wei, H.; Chen, X.; Jiang, L. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J. Mater. Process. Technol.
**2019**, 266, 26–36. [Google Scholar] [CrossRef] - Chen, H.; Gu, D.; Xiong, J.; Xia, M. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting. J. Mater. Process. Technol.
**2017**, 250, 99–108. [Google Scholar] [CrossRef] - Chiumenti, M.; Neiva, E.; Salsi, E.; Cervera, M.; Badia, S.; Moya, J.; Chen, Z.; Lee, C.; Davies, C. Numerical modelling and experimental validation in Selective Laser Melting. Addit. Manuf.
**2017**, 18, 171–185. [Google Scholar] [CrossRef] [Green Version] - Heeling, T.; Cloots, M.; Wegener, K. Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit. Manuf.
**2017**, 14, 116–125. [Google Scholar] [CrossRef] - Pei, W.; Zhengying, W.; Zhen, C.; Junfeng, L.; Shuzhe, Z.; Jun, D. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl. Phys. A
**2017**, 123, 540. [Google Scholar] [CrossRef] - Teng, C.; Gong, H.; Szabo, A.; Dilip, J.J.S.; Ashby, K.; Zhang, S.; Patil, N.; Pal, D.; Stucker, B. Simulating melt pool shape and lack of fusion porosity for selective laser melting of cobalt chromium components. J. Manuf. Sci. Eng.
**2017**, 139, 011009. [Google Scholar] [CrossRef] - Bruna Rosso, C.L.; Demir, A.L.I.; Vedani, M.; Previtali, B. Selective laser melting high performance modeling. In Proceedings of the 6th International Conference on Additive Technologies, Nürnberg, Germany, 29–30 November 2016; pp. 251–259. [Google Scholar]
- Bruna Rosso, C.; Demir, A.G.; Previtali, B. Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction. Mater. Des.
**2018**, 156, 143–153. [Google Scholar] [CrossRef] [Green Version] - Chen, Z.; Xiang, Y.; Wei, Z.; Wei, P.; Lu, B.; Zhang, L.; Du, J. Thermal dynamic behavior during selective laser melting of K418 superalloy: Numerical simulation and experimental verification. Appl. Phys. A
**2018**, 124, 313. [Google Scholar] [CrossRef] - Lee, Y.S.; Zhang, W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In Proceedings of the International Solid Free Form Fabrication Symposium, Austin, TX, USA, 10–12 August 2015; pp. 1154–1165. [Google Scholar]
- Megahed, M.; Mindt, H.W.; N’Dri, N.; Duan, H.; Desmaison, O. Metal additive-manufacturing process and residual stress modeling. Integr. Mater. Manuf. Innov.
**2016**, 5, 61–93. [Google Scholar] [CrossRef] [Green Version] - Liu, B.; Fang, G.; Lei, L.; Liu, W. A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM). Appl. Math. Model.
**2020**, 79, 506–520. [Google Scholar] [CrossRef] - Jian, X.; Wu, C.S. Numerical analysis of the coupled arc–weld pool–keyhole behaviors in stationary plasma arc welding. Int. J. Heat Mass Transf.
**2015**, 84, 839–847. [Google Scholar] [CrossRef] - Zhou, X.; Zhang, H.; Wang, G.; Bai, X. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing. Int. J. Heat Mass Transf.
**2016**, 103, 521–537. [Google Scholar] [CrossRef] - Li, C.J.; Tsai, T.W.; Tseng, C.C. Numerical simulation for heat and mass transfer during selective laser melting of titanium alloys powder. Phys. Procedia
**2016**, 83, 1444–1449. [Google Scholar] [CrossRef] [Green Version] - Wu, Y.C.; San, C.H.; Chang, C.H.; Lin, H.J.; Marwan, R.; Baba, S.; Hwang, W.S. Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation. J. Mater. Process. Technol.
**2018**, 254, 72–78. [Google Scholar] [CrossRef] - Liu, S.; Zhu, H.; Peng, G.; Yin, J.; Zeng, X. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater. Des.
**2018**, 142, 319–328. [Google Scholar] [CrossRef] - Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective. laser melting of metal powders. J. Mater. Process. Technol.
**2010**, 210, 1624–1631. [Google Scholar] [CrossRef] - Zhang, Z.; Huang, Y.; Kasinathan, A.R.; Shahabad, S.I.; Ali, U.; Mahmoodkhani, Y.; Toyserkani, E. 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt. Laser Technol.
**2019**, 109, 297–312. [Google Scholar] [CrossRef] - Owkes, M.; Desjardins, O. A mesh-decoupled height function method for computing interface curvature. J. Comput. Phys.
**2015**, 281, 285–300. [Google Scholar] [CrossRef] - Cummins, S.J.; Francois, M.M.; Kothe, D.B. Estimating curvature from volume fractions. Comput. Struct.
**2005**, 83, 425–434. [Google Scholar] [CrossRef] - Guo, Z.; Fletcher, D.F.; Haynes, B.S. Implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels. Appl. Math. Model.
**2015**, 39, 4665–4686. [Google Scholar] [CrossRef] - Guo, Z.; Haynes, B.S.; Fletcher, D.F. Simulation of microchannel flows using a 3D. height function formulation for surface tension modelling. Int. Commun. Heat Mass Transf.
**2017**, 89, 122–133. [Google Scholar] [CrossRef] - Zheng, M.; Wei, L.; Chen, J.; Zhang, Q.; Zhong, C.; Lin, X.; Huang, W. A novel method for the molten pool and porosity formation modelling in selective laser melting. Int. J. Heat Mass Transf.
**2019**, 140, 1091–1105. [Google Scholar] [CrossRef] - Metelkova, J.; Kinds, Y.; Kempen, K.; de Formanoir, C.; Witvrouw, A. On the influence of laser defocusing in Selective Laser Melting of 316L. Addit. Manuf.
**2018**, 23, 161–169. [Google Scholar] [CrossRef] - Gunenthiram, V.; Peyre, P.; Schneider, M.; Dal, M.; Coste, F.; Koutiri, I.; Fabbro, R. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J. Mater. Process. Technol.
**2018**, 251, 376–386. [Google Scholar] [CrossRef] - Caiazzo, F.; Alfieri, V.; Casalino, G. On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion. Materials
**2020**, 13, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yuan, P.; Gu, D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments. J. Phys. D Appl. Phys.
**2015**, 48, 035303. [Google Scholar] [CrossRef] - Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass Transf.
**2019**, 141, 1036–1048. [Google Scholar] [CrossRef] - Yavari, R.; Severson, J.; Gaikwad, A.; Cole, K.; Rao, P. Predicting Part-Level Thermal History in Metal Additive Manufacturing Using Graph Theory: Experimental Validation with Directed Energy Deposition of Titanium Alloy Parts. ASME
**2019**, 58745, V001T01A038. [Google Scholar] - Cole, K.D.; Yavari, M.R.; Rao, P.K. Computational heat transfer with spectral graph theory: Quantitative verification. Int. J. Therm. Sci.
**2020**, 153, 106383. [Google Scholar] [CrossRef] - Gu, D.; Xia, M.; Dai, D. On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting. Int. J. Mach. Tools Manuf.
**2019**, 137, 67–78. [Google Scholar] [CrossRef] - Chen, H.; Wei, Q.; Wen, S.; Li, Z.; Shi, Y. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int. J. Mach. Tools Manuf.
**2017**, 123, 146–159. [Google Scholar] [CrossRef] - Haeri, S. Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations. Powder Technol.
**2017**, 321, 94–104. [Google Scholar] [CrossRef] [Green Version] - Zhao, Y.; Koizumi, Y.; Aoyagi, K.; Yamanaka, K.; Chiba, A. powder bed generation in electron beam additive manufacturing by discrete element method (DEM). Mater. Today Proc.
**2017**, 4, 11437–11440. [Google Scholar] [CrossRef] - Caprio, L.; Demir, A.G.; Previtali, B. Influence of pulsed and continuous wave emission on melting efficiency in selective laser melting. J. Mater. Process. Technol.
**2019**, 266, 429–441. [Google Scholar] [CrossRef] - Ravi Vishnu, P.; Li, W.B.; Easterling, K.E. Influence of pulsed and continuous wave emission on melting efficiency in selective laser Heat flow model for pulsed welding. Mater. Sci. Technol.
**1991**, 7, 649–659. [Google Scholar] [CrossRef] - Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selectivelaser melting of Ti6Al4V based on temperature distribution simulation andexperimental sintering. Int. J. Adv. Manuf. Technol.
**2012**, 61, 967–974. [Google Scholar] [CrossRef] - Prabhakar, P.; Sames, W.J.; Dehoff, R.; Babu, S.S. Computational modeling ofresidual stress formation during the electron beam melting process for Inconel 718. Addit. Manuf.
**2015**, 7, 83–91. [Google Scholar] - Parry, L.; Ashcroft, I.A.; Wildman, R.D. Understanding the effect of laser scanstrategy on residual stress in selective laser melting throughthermo-mechanical simulation. Addit. Manuf.
**2016**, 12, 1–15. [Google Scholar] - Dunbar, A.J.; Denlinger, E.R.; Gouge, M.F.; Michaleris, P. Experimental validationof finite element modeling for laser powder bed fusion deformation. Addit. Manuf.
**2016**, 12, 108–120. [Google Scholar] - Xiao, B.; Zhang, Y. Laser sintering of metal powders on top of sintered layersunder multiple-line laser scanning. J. Phys. D Appl. Phys.
**2007**, 40, 6725. [Google Scholar] [CrossRef] - Peyre, P.; Aubry, P.; Fabbro, R.; Neveu, R.; Longuet, A. Analytical and numericalmodelling of the direct metal deposition laser process. J. Phys. D Appl. Phys.
**2007**, 41, 025403. [Google Scholar] [CrossRef] - Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidificationmicrostructure of nickel-base super alloy fabricated by laser powder bed fusion. Addit. Manuf.
**2016**, 12, 178–188. [Google Scholar] - Yu, G.; Gu, D.; Dai, D.; Xia, M.; Ma, C.; Shi, Q. On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy. Appl. Phys.
**2016**, 49, 135501. [Google Scholar] [CrossRef] - Ahmadi, A.; Mirzaeifar, R.; Moghaddam, N.S.; Turabi, A.S.; Karaca, H.E.; Elahinia, M. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Mater. Des.
**2016**, 112, 328–338. [Google Scholar] [CrossRef] - Ortiz, M.; Pandolfi, A.; Elahinia, M. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Meth. Eng.
**1999**, 44, 1267–1282. [Google Scholar] [CrossRef] - Lopez-Botello, O.; Martinez-Hernandez, U.; Ramírez, J.; Pinna, C.; Mumtaz, K. Two-dimensional simulation of grain structure growth within selective laser melted AA-2024. Mater. Des.
**2017**, 113, 369–376. [Google Scholar] [CrossRef] - Panwisawas, C. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution. Comput. Mater. Sci.
**2017**, 126, 479–490. [Google Scholar] [CrossRef] - Wu, J.; Wang, L.; An, X. Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting. Optik
**2017**, 137, 65–78. [Google Scholar] [CrossRef] - Ali, H.; Ghadbeigi, H.; Mumtaz, K. Residual stress development in selective laser-melted Ti6Al4V: A parametric thermal modelling approach. Int. J. Adv. Manuf. Technol.
**2018**, 97, 2621–2633. [Google Scholar] [CrossRef] [Green Version] - Fan, Z.; Lu, M.; Huang, H. Selective laser melting of alumina: A single track study. Ceram. Int.
**2018**, 44, 9484–9493. [Google Scholar] [CrossRef] [Green Version] - Staub, A.; Spierings, A.B.; Wegener, K. Correlation of meltpool characteristics and residual stresses at high laser intensity for metal lpbf process. Adv. Mater. Process. Technol.
**2019**, 5, 153–161. [Google Scholar] [CrossRef] - Tan, P.; Shen, F.; Li, B.; Zhou, K. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V. Mater. Des.
**2019**, 168, 107642. [Google Scholar] [CrossRef] - Dong, Z.; Liu, Y.; Li, W.; Liang, J. Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices. J. Alloy. Compd.
**2019**, 791, 490–500. [Google Scholar] [CrossRef] - Ai, Y.; Zhu, S.P.; Liao, D.; Correia, J.A.F.O.; Souto, C.; De Jesus, A.M.P.; Keshtegar, B. Probabilistic modeling of fatigue life distribution and size effect of components with random defects. Int. J. Fatigue
**2019**, 126, 165–173. [Google Scholar] [CrossRef] - Delahaye, J.; Tchuindjang, J.T.; Lecomte-Beckers, J.; Rigo, O.; Habraken, A.M.; Mertens, A. Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting. Acta Mater.
**2019**, 175, 160–170. [Google Scholar] [CrossRef] - Rosenthal, D. Mathematical theory of heat distribution during welding and cutting. Weld. J.
**1941**, 20, 220–234. [Google Scholar] - Fassani, R.N.S.; Trevisan, O.V. Analytical modeling of multipass welding process with distributed heat source. J. Braz. Soc. Mech. Sci. Eng.
**2003**, 25, 302–305. [Google Scholar] [CrossRef] [Green Version] - Gan, Z.; Lian, Y.; Lin, S.E.; Jones, K.K.; Liu, W.K.; Wagner, G.J. Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of Inconel 625. Integr. Mater. Manuf. Innov.
**2019**, 8, 178–193. [Google Scholar] [CrossRef] - Wang, X.; Chou, K. Microstructure simulations of Inconel 718 during selective laser melting using a phase field model. Int. J. Adv. Manuf. Technol.
**2019**, 100, 2147–2162. [Google Scholar] [CrossRef] - Karma, A. Phase-field formulation for quantitative modeling. of alloy solidification. Phys. Rev. Lett.
**2001**, 87, 115701. [Google Scholar] [CrossRef] [Green Version] - Fallah, V.; Amoorezaei, M.; Provatas, N.; Corbin, S.F.; Khajepour, A. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys. Acta Mater.
**2012**, 60, 1633–1646. [Google Scholar] [CrossRef]

**Figure 8.**Longitudinal visualization of the laser track [43].

**Figure 9.**The solidification phenomenon during SLM: (

**a**) partially penetration of laser into powder bed, (

**b**) adequate laser penetration into powder layer.

**Figure 10.**Ripple angle as indicator to examine track surface (

**a**) experimental sample, (

**b**) numerical simulation [90].

**Figure 11.**Melt pool dynamics comprising Marangoni effect, gasification recoil [102].

**Figure 12.**Evolution of calculated porosity on the top surface at various scanning speeds: (

**a**) 200 mm/s; (

**b**) 300 mm/s; (

**c**) 400 mm/s; (

**d**) 500 mm/s [67].

**Figure 13.**Method to compute the cell size with the melt pool depth using Rosenthal’s [130].

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Razavykia, A.; Brusa, E.; Delprete, C.; Yavari, R.
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. *Materials* **2020**, *13*, 3895.
https://doi.org/10.3390/ma13173895

**AMA Style**

Razavykia A, Brusa E, Delprete C, Yavari R.
An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. *Materials*. 2020; 13(17):3895.
https://doi.org/10.3390/ma13173895

**Chicago/Turabian Style**

Razavykia, Abbas, Eugenio Brusa, Cristiana Delprete, and Reza Yavari.
2020. "An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting" *Materials* 13, no. 17: 3895.
https://doi.org/10.3390/ma13173895