The Potential of CEB Reinforced Masonry Technology for (Re)construction in the Context of Disasters
Abstract
:1. Introduction
1.1. Reinforced Masonry Technology with Cement-Stabilized Earth Blocks
1.2. The Context of Disasters
- Environmental sustainability. The chosen approach should avoid the depredation of natural resources and contamination of the environment;
- Technical sustainability. The required skills can be introduced and taught to others, and the necessary tools are available;
- Financial sustainability. Money or exchange of services can be used to pay for the service that needs to be executed;
- Organizational sustainability. There must be a structure to aggregate different actors without the need to involve outside experts in each situation;
- Social sustainability. The final process and product should meet the expectations and needs of society.
2. SHS Methodology
- Case A: Situations that involve the relocation of people from risk areas (predisaster). Even though the disaster has not happened yet, the aim is to relocate vulnerable populations that are currently at risk in the places where they live, moving those to safer areas. Ex.: situations involving areas at risk of flooding, landslides, dam failure, etc.
- Case B: Situations for reconstruction in another location (postdisaster). This case would be applicable where the disaster has already occurred, but the present site is considered to be a risk area. Ex.: situations that involve floods, landslides, dam failure, etc.
- Case C: Situations for reconstruction onsite (postdisaster). In this case, the disaster has already occurred, but it is considered that there is no significant risk reduction in the relocation process and that vulnerability is more related to the houses where people live. Ex.: earthquake situations, strong winds, etc.
- It might have a complete integration between masonry panels, so that vertical joints are not desirable. Thus, the construction of Embryo 1 for further expansion to Embryo 2 is not possible;
- The vertical expansion from Embryos 2–4, or from Embryos 1–3, is not feasible, as the bending moments at the base become very high.
- The arrangement of the openings in Embryos 1, 2 and 4 favors a collective arrangement of residences that minimizes the use of the land, allowing the residences to be built together (there are no openings in lateral walls). This results in an asymmetric openings’ distribution, which is not suitable for dynamic loads.
- Absence of slab;
- Reduced ceiling height;
- Roof gables with symmetrical planes;
- Relatively symmetric distribution of openings;
- Position of stiffeners on the sides of doors and windows openings;
- Use of the roof structure integrated into the structural scheme of the house (Figure 4b);
- Adoption of a portico system that integrates walls and roof structures, common to Cases A, B and C (Figure 4a).
3. Masonry Components’ Properties
3.1. Materials and Methods
3.1.1. Tests Performed for Obtaining Wallet-Block Efficiency
Blocks’ Compressive Strength Tests
First Wallet’s Compressive Strength Tests
3.1.2. Tests Performed for Obtaining Inputs to Seismic Analysis
Shear Test
Second Wallet’s Compressive Strength Tests
3.2. Results
3.2.1. Tests Performed for Obtaining Wallet-Block Efficiency
Blocks Compressive Strength Tests
First Wallet’s Compressive Strength Tests
3.2.2. Tests Performed for Obtaining Inputs to Seismic Analysis
Shear Test
Second Wallet’s Compressive Strength Tests
4. Seismic Analysis
4.1. Materials and Methods
- Use category: I—Usual structures;
- Structure importance factor: ;
- Basic earthquake-resistant system: porticos that resist at least 25% of seismic forces and masonry walls with common reinforcement (ASCE 7-05);
- Response modification coefficient ;
- Overstrength factor ;
- Deflection amplification factor .
- Irregularities in the plan: None;
- Vertical irregularity: None.
4.1.1. Computational Model
4.1.2. Load Scenarios
- 0 degree: 100% Earthquake 0° + 30% Earthquake 90° + 100% Torque 0°;
- 90 degrees: 100% Earthquake 90° + 30% Earthquake 90° + 100% Torque 90°;
- 0 degree: 100% Earthquake 0° + 30% Earthquake 270° + 100% Torque 0°;
- 270 degrees: 100% Earthquake 270° + 30% Earthquake 0° + 100% Torque 270°;
- 180 degrees: 100% Earthquake 180° + 30% Earthquake 90° + 100% Torque 180°;
- 90 degrees: 100% Earthquake 90° + 30% Earthquake 180° + 100% Torque 90°;
- 180 degrees: 100% Earthquake 180° + 30% Earthquake 270° + 100% Torque 180°;
- 270 degrees: 100% Earthquake 270° + 30% Earthquake 180° + 100% Torque 270°.
4.1.3. Structural Verifications
- Bending (in wall plane, outside the plane and oblique);
- Resistant vertical load (axial compression, compression combined with bending, axial tensile);
- Horizontal shear parallel to the joints.
4.2. Results
5. Discussion
5.1. Environmental Sustainability
5.2. Technical Sustainability
5.3. Financial Sustainability
5.4. Socio-Organizational Sustainability
- New construction technologies, materials or house designs are being introduced;
- Agencies provide construction materials;
- House reconstruction is linked to community development activities.
- Reduction in direct labor expenses;
- No financial charges or profit;
- Reduced costs for food, transportation, expenses for the central office and construction site;
- The careful purchase of materials, when made by the community, also contributes to cost reduction and buildings quality assurance [70].
6. Conclusions
- Environmental sustainability, where the use of local materials, simple production and recyclability were the main highlights;
- Technical sustainability, where results of several tests and analyses demonstrated the strength of the structural system for the proposed buildings aimed at light horizontal loads (Embryos 1–4) to moderate (Embryo 2C) horizontal loads;
- Financial sustainability, where it has been shown that, when associated with joint efforts, the savings generated can reach up to 50% compared to the traditional Latin American construction system;
- Socio-organizational sustainability, which sought to highlight the interest of the affected population and the benefits of the technology application in a joint effort for the community organization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pollock, S. Ancient Mesopotamia, 1st ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Berge, B. The Ecology of Building Materials, 2nd ed.; Elsevier Ltd.: Oxford, UK, 2009. [Google Scholar]
- Gomes, I.; Brito, J.; Lopes, M. Modelação de Construções com Terra Crua Sujeitas à Acção Sísmica. In Proceedings of the Congresso Construção, Coimbra, Portugal, 17–19 December 2007. (In Portugese). [Google Scholar]
- Leitão, D.; Barbosa, J.; Soares, E.; Miranda, T.; Cristelo, N.; Briga-Sá, A. Thermal performance assessment of masonry made of ICEB’s stabilised with alkali activated fly ash. Energy Build. 2017, 139, 44–52. [Google Scholar] [CrossRef]
- Gomes, I.; Brito, J.; Lopes, M. Segurança das Construções em Terra Crua Face à Acção Sísmica. In Proceedings of the Fifth Congresso Luso-Moçambicano de Engenharia, Maputo, Mozambique, 2–4 September 2008. (In Portuguese). [Google Scholar]
- Arrigoni, A.; Beckett, C.; Ciancio, D.; Dotelli, G. Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Constr. Build. Mater. 2017, 142, 128–136. [Google Scholar] [CrossRef]
- Dabaieh, M. More than Vernacular: Vernacular Architecture between Past Tradition and Future Vision, 1st ed.; Media-Tryck Lund University: Lund, Sweden, 2015. [Google Scholar]
- Jaquin, P.A.; Augarde, C.E.; Gerrard, C.M. Chronological description of the spatial development of rammed Earth techniques. Int. J. Archit. Herit. 2008, 2, 377–400. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F.; Eires, R.; Jalali, S. A Construção em Terra, 1st ed.; University of Minho TecMinho: Guimarães, Portugal, 2009. (In Portugese) [Google Scholar]
- Moreira, T.S. Experimental Characterization of Dry-Stack Interlocking Compressed Earth Block Masonry. Ph.D. Thesis, University of Minho, Guimarães, Portugal, January 2015. [Google Scholar]
- Pitta, M.R. Estabilização com solo-cimento. Rev. Tech. 1995, 17, 96. [Google Scholar]
- Associação Brasileira De Normas Técnicas. NBR 8491: Tijolo de Solo-Cimento—Requisitos; Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brazil, 2012. (In Portugese) [Google Scholar]
- BSI (British Standards Institution). BS 5628: Code of Practice for the Use of Masonry. Structural Use of Unreinforced Masonry; British Standards Institution: London, UK, 2005. [Google Scholar]
- Herskedal, N.A.; Laursen, P.T.; Jansen, D.C.; Qu, B. Interlocking Compressed Earth Block Walls: Out-Of-Plane Structural Response. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Herskedal, N.A. Investigation of Out-of-Plane Properties of Interlocking Compressed Earth Block Walls. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, December 2012. [Google Scholar]
- Castro, I.G.; Laursen, P.T.; Jansen, D.C.; Qu, B. Performance of interlocking compressed earth block infill in confined masonry construction. In Proceedings of the Tenth U.S. National Conference on Earthquake Engineering, Anchorage, AL, USA, 21–25 July 2014. [Google Scholar]
- Bland, D.W. In-Plane Cyclic Shear Performance of Interlocking Compressed Earth Block Walls. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, July 2011. [Google Scholar]
- Srisanthi, V.G.; Keshav, L.; Poorna Kumar, P.; Jayakumar, T. Finite Element and Experimental Analysis of 3D Masonry Compressed Stabilised Earth Block and Brick Building Models against Earthquake Forces. Period. Polytech. Civ. Eng. 2014, 58, 255–265. [Google Scholar] [CrossRef]
- Stirling, B.J. Flexural Behavior of Interlocking Compressed Earth Block Shear Walls Subjected to In-Plane Loading. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, July 2011. [Google Scholar]
- Vargas, H.R.A. Guía Municipal para la Gestión del Riesgo. Programa de Reducción de la Vulnerabilidade Fiscal del Estado Frente a Desastres Naturales; Banco Mundial: Bogotá, Colômbia, 2010. (In Portugese) [Google Scholar]
- Castro, N.F.S. Reconstrução Pós-desasTres de Habitação. Master’s Thesis, Fernando Pessoa University, Porto, Portugal, 2013. (In Portugese). [Google Scholar]
- Munich Re. Natural Catastrophe Review: Series of Hurricanes Makes 2017 Year of Highest Insured Losses Ever. Available online: https://www.munichre.com/us-non-life/en/company/media-relations/press-releases/2018/2018-01-04-natcat-2018.html (accessed on 28 August 2020).
- The World Bank. Natural Disasters Force 26 Million People into Poverty and Cost $520bn in Losses Every Year, New World Bank Analysis Finds. Available online: https://www.worldbank.org/en/news/press-release/2016/11/14/natural-disasters-force-26-million-people-into-poverty-and-cost-520bn-in-losses-every-year-new-world-bank-analysis-finds (accessed on 28 June 2020).
- EM-DAT Public. Available online: https://public.emdat.be/ (accessed on 28 June 2020).
- ODRC (Owner Driven Reconstruction). Background: Why a Forum on Owner Driven Reconstruction? Available online: http://odreconstruction.net/background/odrvsnonodrpage (accessed on 8 August 2018).
- UN HABITAT for a Better Urban Future. Available online: https://unhabitat.org/topic/housing (accessed on 28 June 2020).
- Oliveira, C.S.; Ferreira, M.A.; Sá, F.M. Earthquake Risk Reduction: From Scenario Simulators Including Systemic Interdependency to Impact Indicators. In Perspectives on European Earthquake Engineering and Seismology; Ansal, A., Ed.; School of Engineering Ozyegin, University Istanbul: Istanbul, Turkey, 2014; Volume 1, pp. 309–330. [Google Scholar]
- Le Maoult, A.; Politopoulos, I.; Atanasiu, G.M.; Casarotti, C.; Pavese, A.; Dorka, U.; Nguyen, V.T.; Marazzi, F.; Molina Ruiz, F.J.; Pegon, P. 1st Year EFAST Annual Report; EUR 24354 EN; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- United Nations Development Programme; Internation Recovery Platform. Guidance Note Recovery: Shelter. 2010. Available online: http://www.unisdr.org/we/inform/publications/16770 (accessed on 28 June 2020).
- Aulas do Projeto SHS—Português BR. Available online: https://www.youtube.com/watch?v=QEY0ZaOz8AY&list=PL515-FzRssVNGAsgIrQNgU3LCld3DGtrY (accessed on 28 June 2020). (In Portugese).
- SHS Solução Habitacional Simples. Available online: https://www.shs.poli.ufrj.br/ (accessed on 28 June 2020). (In Portugese).
- Associação Brasileira De Normas Técnicas. NBR 15421: Projeto de Estruturas Resistentes a Sismos Procedimento; Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brazil, 2006. (In Portuguese) [Google Scholar]
- Associação Brasileira De Normas Técnicas. NBR 6123: Forças Devidas ao Vento em Edificações; Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brazil, 2006. (In Portuguese) [Google Scholar]
- Tenório, M.C.U. Análise da Viabilidade Técnica da Alvenaria Estrutural em Tijolos de Solo-Cimento para Situações com Cargas Sísmicas: Práticas Construtivas e Análise Estrutural do Projeto de Solução Habitacional Simples; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, March 2019. (In Portugese) [Google Scholar]
- International Organization for Standardization. ISO 23909: Soil Quality—Preparation of Laboratory Samples from Farge Samples; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- International Organization for Standardization. ISO 17892-4: Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 4: Determination of Particle Size Distribution; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- International Organization for Standardization. ISO 17892-3: Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 3: Determination of Particle Density; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- International Organization for Standardization. ISO 17892-12: Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 12: Determination of Liquid and Plastic Limits; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Lima, D.A.S.M.F. Avaliação do Tijolo Modular de Solo-Cimento Fabricado em Prensa Manual como Material para Construção de Baixo Custo com Mão de Obra Comunitária; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, September 2018. (In Portuguese) [Google Scholar]
- Associação Brasileira De Normas Técnicas. NBR 8492: Tijolo de Solo-Cimento—Análise Dimensional, Determinação da Resistência à Compressão e da Absorção de Agua—Método de Ensaio; Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2012. (In Portuguese) [Google Scholar]
- Associação Brasileira De Normas Técnicas. NBR 16522: Alvenaria de Blocos de Concreto—Métodos de Ensaio; Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brazil, 2016. (In Portuguese) [Google Scholar]
- Vintzileou, E. Testing Historic Masonry Elements and/or Building Models. In Perspectives on European Earthquake Engineering and Seismology; Ansal, A., Ed.; School of Engineering Ozyegin, University Istanbul: Istanbul, Turkey, 2014; Volume 1, pp. 267–307. [Google Scholar]
- Sousa, J.F. Fabricação e Análise de Tijolos de Solo-Cimento; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2018. (In Portuguese) [Google Scholar]
- BSI (British Standards Institution). BS 1052: Methods of Test for Masonry. Determination of Compressive Strength; British Standards Institution: London, UK, 1999. [Google Scholar]
- Associação Brasileira De Normas Técnicas. NBR 15812: Alvenaria Estrutural—Blocos Cerâmicos; Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brazil, 2010. (In Portugese) [Google Scholar]
- Ramalho, M.A.; Corrêa, M.R. Projeto de Edifícios de Alvenaria Estrutural, 1st ed.; Pini: São Paulo, Brazil, 2003. (In Portugese) [Google Scholar]
- Associação Brasileira De Normas Técnicas. NBR 8681: Ações e Segurança nas Estruturas—Procedimento; Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Gonçalves, F.S. Aspectos Construtivos para Residências de Baixo Custo sob a Ação de Ventos Fortes; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, September 2018. [Google Scholar]
- Thomark, C. The effect of Material Choice on the Total Energy Need and Recycling Potential of a Building. Build. Environ. 2006, 41, 1019–1026. [Google Scholar] [CrossRef]
- Christoforou, E.; Kylili, A.; Fokaides, P.A.; Ioannou, I. Cradle to site life cycle assessment (LCA) of adobe bricks. J. Clean. Prod. 2016, 112, 443–452. [Google Scholar] [CrossRef]
- Morton, T. Earth Masonry—Design and Construction Guidelines, 1st ed.; HIS BRE Press: Berkshire, UK, 2008. [Google Scholar]
- Figuerola, V. Alvenaria de solo-cimento. Téchne 2004, 85, 30–35. [Google Scholar]
- Lourenço, P.I. Construções em Terra. Master’s Thesis, Civil Construction, Technical University of Lisbon, Lisbon, Portugal, 2002. (In Portuguese). [Google Scholar]
- Maza, F. Análisis del Ciclo de Vida de Materiales de Construcción Convencionales y Alternativos; Undergraduate Monograph in Archtecture, Autonomous University of San Luis Potosí: San Luis Potosí, Mexico, 2012. (In Portuguese) [Google Scholar]
- Minke, G. Earth Construction Handbook: The Building Material Earth in the Modern Architecture, 1st ed.; WIT Press: Southampton, UK, 2000. [Google Scholar]
- Fernandes, J.; Peixoto, M.; Mateus, R.; Gervásio, H. Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. J. Clean. Prod. 2019, 241, 118286. [Google Scholar] [CrossRef] [Green Version]
- UN-HABITAT. Going Green: A Handbook of Sustainable Housing Practices; United Nations Human Settlements Programme: Nairobi, Kenya, 2012; Available online: https://www.uncclearn.org/learning-resources/library/16283 (accessed on 28 June 2020).
- Lobo, G.M. Efeito da Umidade de Fabricação na Resistência à Compressão de Tijolos Solo-Cimento; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2019. (In Portugese) [Google Scholar]
- Silva, J.M. Análise de Viabilidade da Metodologia “Solução Habitacional Simples” para Realocação de Áreas de Risco de Inundações do Município de Barra Mansa/RJ; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2019. (In Portugese) [Google Scholar]
- Duarte, C.C.R. Urbanização de Interesse Social: Um Estudo da Organização do Espaço Urbano para Realocação da População em Área de Risco de Inundação No Município de Mesquita (RJ); Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2018. (In Portugese) [Google Scholar]
- Resende, D.M. Projeto e Estudo da Logística do Canteiro de Obras com uma Fábrica de Tijolos de Solo-Cimento Integrada: Uma Análise Prática do Projeto Solução Habitacional Simples; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2019. (In Portugese) [Google Scholar]
- Maia, C.C.C. Análise de Aspectos de Segurança Do Trabalho em Empreendimento de Reconstrução Pós-Desastre em Sistema de Mutirão: Caso de Estudo Do Projeto Solução Habitacional Simples; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2019. (In Portugese) [Google Scholar]
- Freitas, J.P.B. Aspectos Estruturais, Construtivos e Orçamentários para Construção de Casa Popular em Blocos de Concreto em Situações Críticas; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2019. (In Portugese) [Google Scholar]
- Di Gregorio, L.T. Projeto SHS: (Re)construção em situações críticas com tecnologias de baixo custo. In Proceedings of the IV Simpósio Maranhense de Engenharia Civil—SIMEC, São Luís, Brazil, 12–16 August 2019. (In Portugese). [Google Scholar]
- Santos, R.L.R. Orçamento, Planejamento e Gerenciamento de Obras de Residências de Baixo Custo em Regime de Mutirão: Caso de Estudo do Projeto Solução Habitacional Simples; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2019. (In Portugese) [Google Scholar]
- International Federation of Red Cross; Red Crescent Societies. Owner-Driven Housing Reconstruction. 2010. Available online: https://www.sheltercluster.org/sites/default/files/docs/Owner-Driven%20Housing%20Reconstruction%20Guidelines.pdf (accessed on 1 September 2020).
- Barakat, S. Housing Reconstruction After Conflict and Disaster. Hum. Pract. Netw. 2003, 43. Available online: https://odihpn.org/resources/housing-reconstruction-after-conflict-and-disaster/ (accessed on 28 June 2020).
- Jha, A.K.; Barenstein, J.D.; Phelps, P.N.; Pittet, D.; Sena, S. Assessing Damage and Defining Reconstruction Policy: Reconstruction Approaches. In Safer Homes, Stronger Communities: A Handbook for Reconstructing after Natural Disasters; The International Bank for Reconstruction and Development, The World Bank: Washington, DC, USA, 2010; Available online: http://documents.worldbank.org/curated/en/290301468159328458/Safer-homes-stronger-communities-a-handbook-for-reconstructing-after-natural-disasters (accessed on 28 June 2020).
- Abiko, A.K.; Coelho, L.O. Recomendações Técnicas Habitare: Mutirão Habitacional: Procedimentos de Gestão; ANTAC: Porto Alegre, Brazil, 2006; Volume 2. (In Portuguese) [Google Scholar]
- Cardoso, A.L.; Abiko, A.K. Recomendações Técnicas Habitare: Procedimentos de Gestão Habitacional para População de Baixa Renda; ANTAC: Porto Alegre, Brazil, 2006; Volume 5. (In Portugese) [Google Scholar]
- Di Gregorio, L.T. Proposta de Ferramentas para Gestão da Recuperação Habitacional Pós-Desastre No Brasil com foco na População Atingida. Ph.D. Thesis, Federal Fluminense University, Niterói, Brazil, 2013. (In Portugese). [Google Scholar]
- Alerte, J. Proposta de (Re)construção de casas Populares em Regime de Mutirão como Alternativa ao Déficit Habitacional Do Haiti; Undergraduate Monograph in Civil Engineering, Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2017. (In Portugese) [Google Scholar]
Soil Type | Binder | Proportion (Cement–Soil) | Water Content | Age (days) |
---|---|---|---|---|
S1S2 | Cement | 1:6, 1:8, 1:10 and 1:12 (+2% of lime) | Variable according to the soil moisture | 7, 14, 21 and 28 |
CEB | μ (MPa) | σ |
---|---|---|
S1S2–1:8–7 days | 1.33 | 0.12 |
S1S2–1:8–14 days | 1.75 | 0.07 |
S1S2–1:8–21 days | 1.95 | 0.15 |
S1S2–1:8–28 days | 2.06 | 0.28 |
Volume Proportion | Quantity | μ (MPa): 28 days | σ |
---|---|---|---|
1:6 | 3 | 1.92 | 0.08 |
1:8 | 3 | 2.06 | 0.28 |
1:10 | 11 | 1.38 | 0.15 |
1:12 | 4 | 1.34 | 0.22 |
Grout (Wet Curing) | Quantity | μ (MPa) | σ |
---|---|---|---|
1:3:2 (cement, sand, gravel)–28 days | 6 | 6.34 | 0.3 |
Mortar | Quantity | μ (MPa) | σ |
---|---|---|---|
Prefabricated Mortar–7 days | 4 | 4.44 | 0.23 |
Wallets | Quantity | μ (MPa) | σ |
---|---|---|---|
S1S2–1:8–28 days | 3 | 1.22 | 0.24 |
Element | Compression Strength (MPa) |
---|---|
Block | 2.6 |
Grout | 6.34 |
Mortar | 4.44 |
Wallets | 1.22 |
η (dimensionless) | 0.59 |
Grout (Dry Curing) | Quantity | μ (MPa) | σ |
---|---|---|---|
1:6:4 (cement, sand, gravel)—14 days | 3 | 1.46 | 0.05 |
Mortar | Quantity | μ (MPa) | σ |
---|---|---|---|
1:1:6 (cement, lime, sand)—14 days | 3 | 3.46 | 0.16 |
Wallet | Coordinates (Strain; Stress) | Elastic Modulus (kN/m2) | |
---|---|---|---|
P1 | P2 | ||
1 | (0.00392; 289.56533) | (0.00807; 1314.67276) | 246,683 |
2 | (0.00170; 287.15219) | (0.00430; 767.01448) | 184,281 |
3 | (0.00419; 287.21124) | (0.00795; 1314.65390) | 272,966 |
Column | Coordinates (Strain; Stress) | Elastic Modulus (kN/m2) | |
---|---|---|---|
P1 | P2 | ||
1 | (0.00179; 857.79462) | (0.00340; 2862.93209) | 1,243,479 |
2 | (0.00222; 860.54865) | (0.00605; 2868.22443) | 523,258 |
3 | (0.00133; 857.82402) | (0.00305; 2865.49938) | 1,164,537 |
Panels in 0°/180° Direction | % Mass of the Structure | Panels in 90°/270° Direction | % Mass of the Structure |
---|---|---|---|
1 | 17.20% | 4 | 13.25% |
2 | 19.39% | 5 | 19.71% |
3 | 17.20% | 6 | 13.25% |
PGA | Class of Foundation Soil | H—Equivalent Horizontal Force (kN) | Approved Masonry for Horizontal Shear Parallel to the Joints | ||
---|---|---|---|---|---|
0.20 g e.g., Haiti 2018 | A | 0.40 g | 0.133 | 41.29 | 100% |
B | 0.50 g | 0.167 | 51.62 | 100% | |
C | 0.60 g | 0.200 | 61.94 | 100% | |
D | 0.80 g | 0.267 | 82.58 | 100% | |
E | 1.25 g | 0.417 | 129.04 | 79.81% | |
0.50 g e.g., Haiti 2010 | A | 1.00 g | 0.333 | 103.23 | 91.29% |
B | 1.25 g | 0.417 | 129.04 | 79.81% | |
C | 1.50 g | 0.500 | 134.85 | 55.98% | |
D | 1.75 g | 0.583 | 180.65 | 31.27% |
Node | (cm) | _lim (cm) | (cm) | (cm) | Verification |
---|---|---|---|---|---|
270 | 5.4 | 0.38 | 0.96 | OK | |
70 | 270 | 5.4 | 0.40 | 1.01 | OK |
73 | 380 | 7.6 | 0.45 | 1.12 | OK |
Criteria | Conventional Masonry | Purchased CEBs | Manufactured CEBs |
---|---|---|---|
Typology | Conventional masonry + fiber cement roof | Purchased CEBs + acrylic texture sealing (external walls) | CEBs manufactured onsite + acrylic texture sealing (external walls) |
Total Cost | BRL 87,471.60 | BRL 75,385.49 (−14% *) | BRL 67,527.92 (−23% *) |
Cost Without Labor | BRL 51,780.66 | BRL 47,338.44 (−46% *) | BRL 39,480.87 (−55% *) |
With Septic Tank-Filter System | BRL 54,316.52 | BRL 49,874.31 | BRL 42,016.74 |
With Septic Tank-Filter System + Rainwater sse | BRL 56,212.03 | BRL 51,769.81 | BRL 43,912.74 |
Cost per m2 | BRL 1,412.66 | BRL 764.51 | BRL 637.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gregorio, L.; Guimarães, G.; Tenório, M.; Lima, D.; Haddad, A.; Danziger, F.; Jannuzzi, G.; Santos, S.; Lima, S. The Potential of CEB Reinforced Masonry Technology for (Re)construction in the Context of Disasters. Materials 2020, 13, 3861. https://doi.org/10.3390/ma13173861
Di Gregorio L, Guimarães G, Tenório M, Lima D, Haddad A, Danziger F, Jannuzzi G, Santos S, Lima S. The Potential of CEB Reinforced Masonry Technology for (Re)construction in the Context of Disasters. Materials. 2020; 13(17):3861. https://doi.org/10.3390/ma13173861
Chicago/Turabian StyleDi Gregorio, Leandro, Gustavo Guimarães, Marina Tenório, Daniel Lima, Assed Haddad, Fernando Danziger, Graziella Jannuzzi, Sergio Santos, and Silvio Lima. 2020. "The Potential of CEB Reinforced Masonry Technology for (Re)construction in the Context of Disasters" Materials 13, no. 17: 3861. https://doi.org/10.3390/ma13173861
APA StyleDi Gregorio, L., Guimarães, G., Tenório, M., Lima, D., Haddad, A., Danziger, F., Jannuzzi, G., Santos, S., & Lima, S. (2020). The Potential of CEB Reinforced Masonry Technology for (Re)construction in the Context of Disasters. Materials, 13(17), 3861. https://doi.org/10.3390/ma13173861