A Polyethylene Base Moisture Activating Oxygen Scavenging Film Co-Extruded with Tea Polyphenols-β-Cyclodextrin Inclusion Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Moisture Activating Oxygen Scavenging Film
2.2.2. Fourier Transform Infrared (FT-IR) Spectroscopy
2.2.3. Dispersion Characterization
2.2.4. Oxygen Scavenging Characterization
Influence of Oxygen Scavenger Content
Influence of Humidity
Influence of Activating Condition
Influence of Temperature
2.2.5. Tensile Properties Test
2.2.6. Heat-Sealing Strength Test
2.2.7. Application
3. Results and Discussion
3.1. FT-IR Spectroscopy
3.2. Dispersion
3.3. Oxygen Scavenging Performance
3.3.1. Influence of Oxygen Scavenger Content
3.3.2. Influence of Humidity
3.3.3. Influence of Activating Condition
3.3.4. Influence of Temperature
3.4. Tensile Properties
3.5. Heat-Sealing Strength
3.6. Application
3.6.1. VC Content
3.6.2. Brown Stain
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muhammad, S.Z.; Alessandra, Q.; Marco, M.; Andrea, R. Recent developments in the reduction of oxidative stress through antioxidant polymeric formulations. Pharmaceutics 2019, 11, 505–529. [Google Scholar]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Chen, X.; Chen, M.; Xu, C.; Yam, K.L. Critical review of controlled release packaging to improve food safety and quality. Crit. Rev. Food Sci. Nutr. 2019, 59, 2386–2399. [Google Scholar] [CrossRef] [PubMed]
- Gibis, D.; Rieblinger, K. Oxygen scavenging films for food application. Procedia Food Sci. 2011, 1, 229–234. [Google Scholar] [CrossRef]
- Ahn, B.J.; Gaikwad, K.K.; Lee, Y.S. Characterization and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. J. Appl. Polym. Sci. 2016, 133, 44138. [Google Scholar] [CrossRef]
- Tung, K.K.; Bonnecaze, R.T.; Freeman, B.D.; Paul, D.R. Characterization of the oxygen scavenging capacity and kinetics of SBS films. Polymer 2012, 53, 4211–4221. [Google Scholar] [CrossRef]
- Li, L.; Zhao, C.; Zhang, Y.; Yao, J.; Yang, J.; Hu, Q.; Wang, C.; Cao, C. Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chem. 2017, 215, 477–482. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloid. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- Chen, X.; Long, Q.; Zhu, L.; Lu, L.; Sun, L.; Pan, L.; Lu, L.; Yao, W. A double-switch temperature-sensitive controlled release antioxidant film embedded with lyophilized nanoliposomes encapsulating rosemary essential oils for solid food. Materials 2019, 23, 4011. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, I.; Landfester, K.; Taden, A. pH-sensitive nanocapsules with barrier properties: Fragrance encapsulation and controlled release. Macromolecules 2014, 47, 5768–5773. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Zhang, H.; Jiang, S.; Liu, H.; Sun, M.; Jiang, S. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly (vinyl alcohol). Carbohyd. Polym. 2015, 127, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, S.; Xu, S.; Pang, X.; Cai, J.; Wang, J. Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions. J. Mater. Chem. B 2018, 6, 7462–7470. [Google Scholar] [CrossRef] [PubMed]
- Paret, N.; Trachsel, A.; Berthier, D.L.; Herrmann, A. Developing multi stimuli-responsive core/shell microcapsules to control the release of volatile compounds. Macromol. Mater. Eng. 2018, 304, 1800599. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, L.; Cheng, C.; Huang, J.; Fan, X.; Nie, C.; Zhao, W.; Zhao, C. Antibacterial nanoagents: Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 2018, 28, 1870145. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, A. Controlled release of volatile compounds using the Norrish type II reaction. Photochemistry 2019, 46, 242–264. [Google Scholar]
- Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Zhao, R.F.; Yin, X.Q.; Shi, Y.D.; Fan, H.J.; Zhou, Y.; Tan, L. Antibacterial and antioxidant composite fiber prepared from polyurethane and polyacrylonitrile containing tea polyphenols. Fiber Polym. 2020, 21, 103–110. [Google Scholar] [CrossRef]
- Lei, Y.; Wu, H.; Jiao, C.; Jiang, Y.; Liu, L.; Xiao, D.; Lu, J.; Zhang, Z.; Shen, J.; Li, S. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloid. 2019, 94, 128–135. [Google Scholar] [CrossRef]
- Zhang, W.L.; Jiang, W.B. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol. 2020, 155, 1252–1261. [Google Scholar] [CrossRef]
- Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017, 68, 70–82. [Google Scholar] [CrossRef]
- Kanwar, J.; Taskeen, M.; Mohammad, I.; Huo, C.; Chan, T.H.; Dou, Q.P. Recent advances on tea polyphenols. Front. Biosci. Landmrk 2012, 4, 111–131. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tsai, Y.J.; Tsay, J.S.; Lin, J.K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 2003, 51, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J. Thermal Stability of Tea Polyphenols. Farm Prod. Process. 2014, 9, 13–14, 22. [Google Scholar]
- Saenger, W. β-cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. 1980, 19, 344–362. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrin and their uses: A review. Process. Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Li, N.; Xu, L. Thermal analysis of β-cyclodextrin/berberine chloride inclusion compounds. Process Biochem. 2010, 499, 166–170. [Google Scholar] [CrossRef]
- Ding, L.; He, J.; Huang, L.; Lu, R. Studies on a novel modified β-cyclodextrin inclusion complex. J. Mol. Struct. 2010, 979, 122–127. [Google Scholar] [CrossRef]
- Pan, L.; Wang, J.; Lu, L.X.; Qiu, X.L. Modeling the effective thermal conductivity for disperse systems with high solid mass fractions. Int. J. Heat Mass Trans. 2016, 97, 719–724. [Google Scholar] [CrossRef]
- Jiang, F.Y.; Lu, L.X.; Qiu, X.L.; Tang, Y.L. Process optimization and oxygen scavenging properties of styrene-butadiene triblock copolymer. J. Food Sci. Biotechnol. 2016, 35, 834–838. [Google Scholar]
- Arai, C.; Hosaka, S.; Murase, K.; Sano, Y. Measurement of the relative humidity of saturated salt solutions. J. Chem. Eng. Jpn. 1976, 9, 328–330. [Google Scholar] [CrossRef] [Green Version]
- Determination of Vitamin C Content in Fruits and Vegetables (2, 6-Dichloroindophenol Titration); GB/T6195-1986; Standardization Administration of the People’s Republic of China: Beijing, China, 1986.
- Wang, P.; Zhang, K.S.; Ren, Y.X. Kinetic model of quality change and prediction of the shelf-life of stored mushroom. Food Ind. Sci. Technol. 2012, 33, 313–316. [Google Scholar]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krstic, M.; Stojadinovic, M.; Smiljanic, K.; Stanic-Vucinic, D.; Velickovic, T.C. The anti-cancer activity of green tea, coffee and cocoa extracts on human cervical adenocarcinoma HeLa cells depends on both pro-oxidant and anti-proliferative activities of polyphenols. RSC Adv. 2015, 5, 3260–3268. [Google Scholar] [CrossRef]
- Cramer, F.; Henglein, F.M. Einschlussverbindungen der cyclodextrine mit gasen. Angew. Chem. 1956, 68, 649. [Google Scholar] [CrossRef]
- Cramer, F.; Henglein, F.M. Über einschlußverbindungen, XII. verbindungen von α-cyclodextrin mit gasen. Eur. J. Inorg. Chem. 1957, 90, 2572–2575. [Google Scholar] [CrossRef]
- Zhai, X.C.; Wang, J.P.; Jiao, A.Q.; Jin, Z.Y. Study on the release behavior of allyl isothiocyanate in antimicrobial packaging. Sci. Technol. Food Ind. 2013, 34, 260–263, 320. [Google Scholar]
- Saruyama, H.; Tanida, M. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa, L.). Plant Sci. 1995, 109, 105–113. [Google Scholar] [CrossRef]
- Soderquist, C.A.; Kelly, J.A.; Mandel, F.S. Gallic Acid as an Oxygen Scavenger. U.S. Patent 4,968,438, 17 November 1988. [Google Scholar]
- Oral, E.; Wannomae, K.K.; Hawkins, N.; Harris, W.H.; Muratoglu, O.K. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 2004, 25, 5515–5522. [Google Scholar] [CrossRef]
- Al-Turaif, H.A. Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog. Org. Coat. 2013, 76, 477–481. [Google Scholar] [CrossRef]
- Plastics Laminated Films and Bags Using for Packaging of Liquid Food; GB 19741-2005; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2005.
- Lu, L.J.; Lu, L.X. Effects of EVA amount on the performance of HDPE/LDPE antioxidant composite film. Plastics 2018, 47, 31–34. [Google Scholar]
- Shang, Y.; Lu, L.X.; Xu, W.C. Anaerobic decomposition kinetics of vitamin C in orange juice. Sci. Technol. Food Ind. 2008, 29, 120–122. [Google Scholar]
LDPE Resin/g | Oxygen Scavenger/g | Oxygen Scavenger Content/% |
---|---|---|
500 | 0 | 0 |
455 | 5 | 1 |
485 | 15 | 3 |
475 | 25 | 5 |
465 | 35 | 7 |
450 | 50 | 10 |
Feeding Section | Compression Section | Homogenizing Section | Cast Die Section | Feeding Velocity | Screw Velocity | Draw Down Ratio (Machine Direction) |
---|---|---|---|---|---|---|
160 °C | 165 °C | 170 °C | 170 °C | 5 kg/h | 15 rpm | 7.8 |
Saturated Solution | MgCl2 | NaBr | NaCl | KCl | K2SO4 | H2O |
---|---|---|---|---|---|---|
RH/% | 32.44 ± 0.14 | 56.03 ± 0.38 | 75.09 ± 0.11 | 83.62 ± 0.25 | 97.00 ± 0.40 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Zhang, M.; Lu, L.; Ou, B.; Chen, X. A Polyethylene Base Moisture Activating Oxygen Scavenging Film Co-Extruded with Tea Polyphenols-β-Cyclodextrin Inclusion Complex. Materials 2020, 13, 3857. https://doi.org/10.3390/ma13173857
Pan L, Zhang M, Lu L, Ou B, Chen X. A Polyethylene Base Moisture Activating Oxygen Scavenging Film Co-Extruded with Tea Polyphenols-β-Cyclodextrin Inclusion Complex. Materials. 2020; 13(17):3857. https://doi.org/10.3390/ma13173857
Chicago/Turabian StylePan, Liao, Meiying Zhang, Lixin Lu, Bingxian Ou, and Xi Chen. 2020. "A Polyethylene Base Moisture Activating Oxygen Scavenging Film Co-Extruded with Tea Polyphenols-β-Cyclodextrin Inclusion Complex" Materials 13, no. 17: 3857. https://doi.org/10.3390/ma13173857
APA StylePan, L., Zhang, M., Lu, L., Ou, B., & Chen, X. (2020). A Polyethylene Base Moisture Activating Oxygen Scavenging Film Co-Extruded with Tea Polyphenols-β-Cyclodextrin Inclusion Complex. Materials, 13(17), 3857. https://doi.org/10.3390/ma13173857