Shear Deformation Behavior of a Double-Layer Asphalt Mixture Based on the Virtual Simulation of a Uniaxial Penetration Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Laboratory Test
3. Modeling of the Virtual Uniaxial Penetration Test
3.1. Capture and Processing of the Longitudinal Profile Images
3.2. Virtual Simulation of the Uniaxial Penetration Test
3.3. Determination of the Bonding Parameters
4. Results and Discussion
4.1. Verification of the Virtual Uniaxial Penetration Test
4.2. Contact Stress and Bonding Performance within the Double-Layer Asphalt Mixture
4.3. Coarse Aggregate Movement Before and After Simulation Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sousa, J.B.; Crans, J.; Monismith, C.L. SHRP-A-318: Summary Report on Permanent Deformation in Asphalt Concrete, Strategic Highway Rose. Program; National Research Council: Washington, DC, USA, 1991. [Google Scholar]
- Sousa, J.B.; Weissman, S.; Sackman, J.; Monismith, C.L. Nonlinear Elastic Viscous with Damage Model to Predict Permanent Deformation of Asphalt Concrete Mixtures; Transportation Research Board: Washington, DC, USA, 1993; pp. 80–93. [Google Scholar]
- Birgisson, B.; Darku, D.; Roque, R.; Page, G. The need for inducing shear instability to obtain relevant parameters for HMA rut-resistance. Assoc. Asph. Paving Technol. 2004, 73, 23–52. [Google Scholar]
- Coleri, E.; Harvey, J.T.; Yang, K.; Boone, J.M. Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures. Constr. Build. Mater. 2012, 30, 783–793. [Google Scholar] [CrossRef]
- Collop, A.C.; Sutanto, M.H.; Airey, G.D.; Elliott, R.C. Development of an automatic torque test to measure the shear bond strength between asphalt. Constr. Build. Mater. 2011, 25, 623–629. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y. Influencing Factors of Shear Strength of Asphalt Mixture. J. Highw. Transp. Res. Dev. 2012, 29, 9–14. [Google Scholar]
- Zhu, H.R.; Yang, J.; Chen, Z.W. Triaxial shear test on anti-shear properties of asphalt mixture. J. Traffic Transp. Eng. 2009, 9, 19–23. [Google Scholar]
- Bi, Y.F.; Sun, L.J. Research on Test Method of Asphalt Mixture’s Shearing Properties. J. Tongji Univ.: Nat. Sci. Ed. 2005, 33, 1036–1040. [Google Scholar]
- Chen, X.W.; Huang, B.S.; Xu, Z.L. Uniaxial Penetration Testing for Shear Resistance of Hot-Mix Asphalt Mixtures. Transp. Res. Rec. J. Transp. Res. Board. 2006, 1970, 116–125. [Google Scholar] [CrossRef]
- Cundall, P.A.; Stack, O.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Cheng, J.L.; Qian, X.D. Temperature-dependent viscoelastic model for asphalt concrete using discrete rheological representation. Constr. Build. Mater. 2015, 93, 157–165. [Google Scholar] [CrossRef]
- Erol, T.; Huang, H.; Bian, X.C. Geogrid-aggregate interlock mechanism investigated through aggregate imaging-based discrete element modeling approach. Int. J. Geomech. 2012, 12, 391–398. [Google Scholar]
- Kellogg, K.M.; Liu, P.Y.; Casey, Q.; Hrenya, C.M. Continuum theory for rapid cohesive-particle flows: General balance equations and discrete-element-method-based closure of cohesion-specific quantities. J. Fluid Mech. 2017, 832, 345–382. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, H.B.; Ye, M.Y.; Li, Z.H.; Huang, H.W. Investigation on the packing behaviors and mechanics of Li4SiO4 pebble beds by discrete element method. Fusion Eng. Des. 2017, 125, 551–555. [Google Scholar] [CrossRef]
- Gong, F.Y.; Zhou, X.D.; You, Z.P.; Liu, Y.; Chen, S.Y. Using discrete element models to track movement of coarse aggregates during compaction of asphalt mixture. Constr. Build. Mater. 2018, 189, 338–351. [Google Scholar] [CrossRef]
- D’Apuzzo, M.; Evangelisti, A.; Nicolosi, V. Preliminary Investigation on a Numerical Approach for the Evaluation of Road Macrotexture. In Computational Science and Its Applications–ICCSA 2017; Springer: Trieste, Italy, 2017; pp. 157–172. [Google Scholar]
- Enad, M.; Eyad, M.; Soheil, N. Discrete element analysis of the influences of aggregate properties and internal structure on fracture in asphalt mixtures. J. Mater. Civ. Eng. 2010, 22, 10–20. [Google Scholar]
- Hou, S.G.; Zhang, D.; Huang, X.M.; Zhao, Y.L. Investigation of micro-mechanical response of asphalt mixtures by a three-dimensional discrete element model. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2015, 30, 338–343. [Google Scholar] [CrossRef]
- Feng, H.; Pettinari, M.; Stang, H. Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method. Constr. Build. Mater. 2015, 98, 366–375. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.Y.; Zhang, Y.; Zhao, Y.L.; Huang, X.M. Effect of air voids on the high-temperature creep behavior of asphalt mixture based on three-dimensional discrete element modeling. Mater. Des. 2016, 89, 304–313. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Y.; Zhang, D.Y.; Yan, J.H.; Qin, Y. Influences by air voids on fatigue life of asphalt mixture based on discrete element method. Constr. Build. Mater. 2016, 126, 785–799. [Google Scholar] [CrossRef]
- Ren, J.L.; Sun, L.J. Characterizing air void effect on fracture of asphalt concrete at low-temperature using discrete element method. Eng. Fract. Mech. 2017, 170, 23–43. [Google Scholar] [CrossRef]
- Ministry of Transport. Technical Specification for Construction of Highway Asphalt Pavement: JTGF40-2004; China Communications Press: Beijing, China, 2004. [Google Scholar]
- Ministry of Transport. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering: JTGE20-2011; China Communications Press: Beijing, China, 2011. [Google Scholar]
- Ministry of Transport. Specifications for Design of Highway Asphalt Pavement: JTGD50-2017; China Communications Press: Beijing, China, 2017. [Google Scholar]
- Peng, Y.; Sun, L.J. Micromechanics-based analysis of the effect of aggregate homogeneity on the uniaxial penetration test of asphalt mixtures. J. Mater. Civ. Eng. 2016, 28, 04016119. [Google Scholar] [CrossRef]
- Yang, P.P.; Xiao, P.; Ding, Y.; Zheng, J.H. Microstructure characteristics analysis of asphalt mixture based on the discrete element method. J. China Univ. Min. Technol. 2018, 47, 900–906. [Google Scholar]
- Ma, T.; Zhang, D.Y.; Zhang, Y.; Hong, J.X. Micromechanical response of aggregate skeleton within asphalt mixture based on virtual simulation of wheel tracking test. Constr. Build. Mater. 2016, 111, 153–163. [Google Scholar] [CrossRef]
Aggregate | Percentage of Mass Passing (Square Opening Screen)/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
16.0 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
1 # | 100.0 | 91.8 | 22.7 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
2 # | 100.0 | 100.0 | 99.6 | 20.3 | 3.5 | 2.1 | 1.5 | 0.7 | 0.5 | 0.5 |
3 # | 100.0 | 100.0 | 100.0 | 90.3 | 10.4 | 4.2 | 1.9 | 1.3 | 1.1 | 0.6 |
4 # | 100.0 | 100.0 | 100.0 | 99.0 | 81.3 | 63.8 | 41.7 | 24.4 | 13.0 | 5.7 |
Mineral powder | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 98.5 | 85.0 |
Aggregate | Percentage of Mass Passing (Square Opening Screen)/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
26.5 | 19.0 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
1 # | 100 | 82.6 | 9.2 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
2 # | 100 | 100 | 90.5 | 58.2 | 1.7 | 0.6 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
3 # | 100 | 100 | 100 | 100 | 71.7 | 7.9 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
4 # | 100 | 100 | 100 | 100 | 100 | 77.2 | 60.1 | 35.8 | 17.7 | 16.1 | 10.6 |
Mineral powder | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 98.8 | 82.8 |
Mixture | Asphalt-Aggregate Ratio/wt.% | Stability/kN | Flow Value/(0.1 mm) | Void Ratio/% | Bulk Density/(g·cm−3) | Dynamic Stability/mm | Splitting Strength Ratio/% |
---|---|---|---|---|---|---|---|
SMA13 | 6.1 | 7.42 | 43.3 | 4.3 | 2.478 | 4631 | 82.7 |
AC20 | 4.6 | 10.49 | 37.87 | 3.6 | 2.454 | 1230 | 81.7 |
Particle Stiffness/(N·m−1) | 1 × 108 |
---|---|
Average value of contact bond strength/N | 1 × 104 |
Standard deviation of contact bond strength | 0.5 × 104 |
Average value of parallel bond strength/N | 3 × 105 |
Standard deviation of parallel bond strength | 0.25 × 105 |
Internal friction angle/° | 22 |
Laboratory Test/MPa | Virtual Test/MPa | Error/% |
---|---|---|
1.07 | 1.18 | 10.28 |
1.12 | 1.20 | 7.14 |
1.09 | 1.17 | 7.34 |
Movement | Upper Layer | Lower Layer | |
---|---|---|---|
Rotation | Rotation angle α/° | 1.99 | 1.37 |
Transition | Transition (x2−x1)/10−4 m | 1.47 | 1.73 |
Transition (y2−y1)/10−4 m | 2.15 | 0.84 | |
Mean displacement angle θ/° | 55.64 | 25.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, C.; Pan, X.; Xiao, P.; Kang, A.; Wu, Z. Shear Deformation Behavior of a Double-Layer Asphalt Mixture Based on the Virtual Simulation of a Uniaxial Penetration Test. Materials 2020, 13, 3700. https://doi.org/10.3390/ma13173700
Kou C, Pan X, Xiao P, Kang A, Wu Z. Shear Deformation Behavior of a Double-Layer Asphalt Mixture Based on the Virtual Simulation of a Uniaxial Penetration Test. Materials. 2020; 13(17):3700. https://doi.org/10.3390/ma13173700
Chicago/Turabian StyleKou, Changjiang, Xiaohui Pan, Peng Xiao, Aihong Kang, and Zhengguang Wu. 2020. "Shear Deformation Behavior of a Double-Layer Asphalt Mixture Based on the Virtual Simulation of a Uniaxial Penetration Test" Materials 13, no. 17: 3700. https://doi.org/10.3390/ma13173700
APA StyleKou, C., Pan, X., Xiao, P., Kang, A., & Wu, Z. (2020). Shear Deformation Behavior of a Double-Layer Asphalt Mixture Based on the Virtual Simulation of a Uniaxial Penetration Test. Materials, 13(17), 3700. https://doi.org/10.3390/ma13173700