Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds
Abstract
:1. Introduction
- crystal thickness Lc;
- crystal width parallel La// and perpendicular La┴ to the fiber axis in meridional and equatorial modes;
- interlayer spacing of the basal planes d002;
- relative orientation degree and Herman’s orientation factors of the crystals with respect to the fiber main axis;
- porosity;
- true pore length, overall tilt angle (misorientation) of the pores with respect to the fiber main axis;
- specific surface of the pores;
- intersection length and radius of gyration;
- orientation degree of the pores alongside the fiber main axis.
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Micro-Compounder
2.2.2. Shear Rheological Measurements
Oscillatory Strain Sweep Test
Oscillatory Frequency Sweep Test
Time–Temperature–Superposition
2.2.3. Dry-Jet Wet Spinning
2.2.4. Single Fiber Tensile Test
2.2.5. Wide Angle X-Ray Scattering (WAXS)
2.2.6. Thermogravimetric Analysis (TGA)
2.2.7. Shrinkage Measurements
2.2.8. Differential Scanning Calorimetry (DSC)
2.2.9. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX)
2.2.10. Microscopy
3. Results and Discussions
3.1. Micro-Compounding
3.2. Rheological Behavior
3.3. Spinning by Dry-Jet Wet Method
3.4. Evaluation of the Drawing Dependent Fineness and Diameter
- is the diameter of the fiber in µm collected on the first godet,
- Q is the mass throughput in g·min−1,
- is the density of the dope in g·cm−3,
- is the polymer fraction in the spinning dope in wt. %,
- is the take-up speed of the first godet in m·min−1.
3.5. Mechanical Properties
3.6. Crystallographic Fine Structure
3.7. Thermal and Thermo-Mechanical Properties
3.7.1. TGA Measurements
- (a)
- Neat lignin cannot maintain such values under comparable conditions. Usually, the char residue of lignin lies between 20 and 30% at 800 °C under nitrogen.
- (b)
- For CF, it is important to maintain high carbon yields to increase the productivity, as described in the introduction of this paper.
- is the heating rate in K·min−1,
- is the ideal gas constant R = 8.3144598 J·K−1·mol−1,
- is the temperature at the peak maximum in K,
3.7.2. Shrinkage Measurements
3.7.3. Thermal Stabilization Kinetics
3.8. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al Aiti, M.; Göbel, M.; Jehnichen, D.; Fischer, D.; Brünig, H.; Scheffler, C.; Wulff, L.; Heinrich, G. The Impact of the lattice structure and pore geometry on the mechanical properties of carbon fibers with different tensile modulus (100–950 GPa) studied by Raman spectroscopy, WAXS and SAXS techniques. In Proceedings of the SAMP Europe Conference 2017 Stuttgart, Leinfelden-Echterdingen, Germany, 14–16 November 2017. [Google Scholar]
- Witten, E.; Kraus, T.; Kühnel, M. Composites-Marktbericht 2016: Marktentwicklung, Trends, Ausblicke und Herausforderungen; Industrievereinigung Verstärkte Kunststoffe e.V. (AVK) and Carbon Composites CC e. V.: Frankfurt, Germany, 2016. [Google Scholar]
- Witten, E.; Sauer, M.; Kühnel, M. Composites-Marktbericht 2017: Marktentwicklungen, Trends, Ausblicke und Herausforderungen; Industrievereinigung Verstärkte Kunststoffe e.V. (AVK) and Carbon Composites CC e. V.: Frankfurt, Germany, 2017. [Google Scholar]
- Witten, E.; Mathes, V.; Sauer, M.; Kühnel, M. Composites-Marktbericht 2018: Marktentwicklungen, Trends, Ausblicke und Herausforderungen; Industrievereinigung Verstärkte Kunststoffe e.V. (AVK) and Carbon Composites CC e. V.: Frankfurt, Germany, 2018. [Google Scholar]
- Das, S.; Warren, J.; West, D.; Schexnayder, S.M. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis; Energy and Transportation Science Division, Oak Ridge National Laboratory and The University of Tennessee, Knoxville: Knoxville, TN, USA, 2016. [Google Scholar]
- Al Aiti, M.; Jehnichen, D.; Fischer, D.; Brünig, H.; Heinrich, G. On the morphology and structure formation of carbon fibers from polymer precursor systems. Prog. Mater. Sci. 2018, 98, 477–551. [Google Scholar] [CrossRef]
- Norris, R.E.; Kaufman, M.; Naskar, A.; Paulauskas, F.L.; Yarborough, K.; Derstine, C. Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies; Document Number ORNL/TM-2014/239; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2014; p. 55. [Google Scholar]
- Steudle, L. New Precursors for Lignin Based Carbon Fibers; Universität Stuttgart: Stuttgart, Germany, 2014. [Google Scholar]
- Horvath, B.; Peralta, P.; Frazier, C.; Peszlen, I. Thermal softening of Transgenic Aspen. Biorescources 2011, 6, 2125–2134. [Google Scholar]
- Kubo, S.; Uraki, Y.; Sano, Y. Thermomechanical Analysis of Isolated Lignins. Holzforsch. Int. J. Biol. Chem. Phys. Technol. Wood 1996, 50, 144–150. [Google Scholar] [CrossRef]
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef] [Green Version]
- Steudle, L.M.B.; Michael, R. Frank Erik Precursor-Fasern von Lignin-basierten Carbonfasern, deren Herstellung und Verwendung. DE102014004797A1, 3 April 2014. [Google Scholar]
- Clauss, M.; Frank, E.; Buchmeiser, M.R. Verfahren zur Herstellung einer Lignin-basierten Zusammensetzung. WO 2017/089585 AI, 25 November 2015. [Google Scholar]
- Eckert, R.C.; Abdullah, Z. Carbon Fibers from Kraft Softwood Lignin. U.S. Patent 7,678,358, 16 March 2010. [Google Scholar]
- Tomani, P. The lignoboost process. Cellul. Chem. Technol. 2010, 44, 53. [Google Scholar]
- Bährle, C.; Custodis, V.; Jeschke, G.; van Bokhoven, J.A.; Vogel, F. In situ Observation of Radicals and Molecular Products During Lignin Pyrolysis. ChemSusChem 2014, 7, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, K.; Liu, Q.; Gu, Y.; Luo, Z.; Cen, K.; Fransson, T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 2009, 27, 562–567. [Google Scholar] [CrossRef]
- Cui, C.; Sadeghifar, H.; Sen, S.; Argyropoulos, D.S. Toward thermoplastic lignin polymers; Part II: Thermal and polymer characteristics of kraft lignin and derivatives. Biorescources 2013, 8, 864–886. [Google Scholar] [CrossRef] [Green Version]
- Kadla, J.F.; Kubo, S.; Venditti, R.A.; Gilbert, R.D.; Compere, A.L.; Griffith, W. Lignin-based carbon fibers for composite fiber applications. Carbon 2002, 40, 2913–2920. [Google Scholar] [CrossRef]
- Norberg, I.; Nordström, Y.; Drougge, R.; Gellerstedt, G.; Sjöholm, E. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J. Appl. Polym. Sci. 2013, 128, 3824–3830. [Google Scholar] [CrossRef]
- Brodin, I.; Sjöholm, E.; Gellerstedt, G. The behavior of kraft lignin during thermal treatment. J. Anal. Appl. Pyrolysis 2010, 87, 70–77. [Google Scholar] [CrossRef]
- Brodin, I. Chemical Properties and Thermal Behaviour of Kraft Lignins; KTH Royal Institute of Technology: Stockholm, Sweden, 2009. [Google Scholar]
- Ebeling, H.; Fink, H.-P.; Lehmann, A. Method for the Production of Lignin-Containing Precursor Fibres and also Carbon Fibres. U.S. Patent 10,006,152, 26 June 2012. [Google Scholar]
- Ma, Y.; Asaadi, S.; Johansson, L.-S.; Ahvenainen, P.; Reza, M.; Alekhina, M.; Rautkari, L.; Michud, A.; Hauru, L.; Hummel, M.; et al. High-Strength Composite Fibers from Cellulose–Lignin Blends Regenerated from Ionic Liquid Solution. ChemSusChem 2015, 8, 4030–4039. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.; Sjöholm, E.; Reimann, A. Carbon fibres from precursors produced by dry-jet wet-spinning of kraft lignin blended with kraft pulps. Holzforschung 2017, 71, 275. [Google Scholar] [CrossRef]
- Bengtsson, A.; Bengtsson, J.; Olsson, C.; Sedin, M.; Jedvert, K.; Theliander, H.; Sjöholm, E. Improved yield of carbon fibres from cellulose and kraft lignin. Holzforschung 2018, 72, 1007. [Google Scholar] [CrossRef]
- Byrne, N.; De Silva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 2018, 25, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A.; Rials, T.G. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. [Google Scholar] [CrossRef]
- Klett, A.S.; Chappell, P.V.; Thies, M.C. Recovering ultraclean lignins of controlled molecular weight from Kraft black-liquor lignins. Chem. Commun. 2015, 51, 12855–12858. [Google Scholar] [CrossRef]
- Ishikawa, N.; Uraki, Y.; Sano, Y. Preparation of lignin fibers from softwood acetic acid lignin: Relationship between fusibility and the chemical structure of lignin. Mokuzai Gakkaishi 1997, 43, 655–662. [Google Scholar]
- Fields, R.P.; Ragg, L.P. Production of Low Ash Lignin. U.S. Patent 4,946,946, 7 August 1990. [Google Scholar]
- Al-Hadithi, T.S.R.; Barnes, H.A.; Walters, K. The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems. Colloid Polym. Sci. 1992, 270, 40–46. [Google Scholar] [CrossRef]
- Cox, W.P.; Merz, E.H. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, 619–622. [Google Scholar] [CrossRef]
- Colby, R.H. Breakdown of time-temperature superposition in miscible polymer blends. Polymer 1989, 30, 1275–1278. [Google Scholar] [CrossRef]
- Ajji, A.; Choplin, L.; Prud’Homme, R.E. Rheology of polystyrene/poly(vinyl methyl ether)blends near the phase transition. J. Polym. Sci. Part B Polym. Phys. 1991, 29, 1573–1578. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, H.H.; Son, H.W.; Han, C.D. Phase Behavior and Rheology of Polystyrene/Poly(α-methylstyrene) and Polystyrene/Poly(vinyl methyl ether) Blend Systems. Macromolecules 1998, 31, 8566–8578. [Google Scholar] [CrossRef]
- Roovers, J.; Toporowski, P.M. Microheterogeneity in miscible blends of 1,2-polybutadiene and 1,4-polyisoprene. Macromolecules 1992, 25, 3454–3461. [Google Scholar] [CrossRef]
- Ngai, K.L.; Plazek, D.J. Breakdown of time-temperature superposition in miscible polymer blends and the coupling scheme. Macromolecules 1990, 23, 4282–4287. [Google Scholar] [CrossRef]
- Friedrich, C.; Schwarzwälder, C.; Riemann, R.E. Rheological and thermodynamic study of the miscible blend polystyrene/poly(cyclohexyl methacrylate). Polymer 1996, 37, 2499–2507. [Google Scholar] [CrossRef]
- Pathak, J.A.; Colby, R.H.; Kamath, S.Y.; Kumar, S.K.; Stadler, R. Rheology of Miscible Blends: SAN and PMMA. Macromolecules 1998, 31, 8988–8997. [Google Scholar] [CrossRef]
- Han, C.D.; Kim, J. Rheological technique for determining the order–disorder transition of block copolymers. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 1741–1764. [Google Scholar] [CrossRef]
- Ravula, S.; Larm, N.E.; Mottaleb, M.A.; Heitz, M.P.; Baker, G.A. Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Gong, M.; Wang, C.; Wang, B.; Zhang, Y.; Wang, H. Dynamic modeling of dry-jet wet spinning of cellulose/[BMIM]Cl solution: Complete deformation in the air-gap region. Cellulose 2015, 22, 1963–1976. [Google Scholar] [CrossRef]
- Morris, E.A.; Weisenberger, M.C.; Bradley, S.B.; Abdallah, M.G.; Mecham, S.J.; Pisipati, P.; McGrath, J.E. Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber. Polymer 2014, 55, 6471–6482. [Google Scholar] [CrossRef] [Green Version]
- Lyons, K.M.; Newcomb, B.A.; McDonald, K.J.; Chae, H.G.; Kumar, S. Development of single filament testing procedure for polyacrylonitrile precursor and polyacrylonitrile-based carbon fibers. J. Compos. Mater. 2015, 49, 2231–2240. [Google Scholar] [CrossRef]
- Newcomb, B.A.; Gulgunje, P.V.; Gupta, K.; Kamath, M.G.; Liu, Y.; Giannuzzi, L.A.; Chae, H.G.; Kumar, S. Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers. Polym. Eng. Sci. 2015, 55, 2603–2614. [Google Scholar] [CrossRef]
- Bahl, D.P.; Mathur, R.B.; Dhami, T.L. Modification of polyacrylonitrile fibres to make them suitable for conversion into high performance carbon fibres. Mater. Sci. Eng. 1985, 73, 105–112. [Google Scholar] [CrossRef]
- Hauru, L.K.J.; Hummel, M.; Michud, A.; Sixta, H. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 2014, 21, 4471–4481. [Google Scholar] [CrossRef]
- Lindenmeyer, P.H.; Hosemann, R. Application of the Theory of Paracrystals to the Crystal Structure Analysis of Polyacrylonitrile. J. Appl. Phys. 1963, 34, 42–45. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Ku, B.C.; Kim, J.; Joh, H.I. Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Adv. Chem. Eng. Sci. 2012, 2, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.J.; McKinney, M.A.; Wilkie, C.A. The thermal degradation of polyacrylonitrile. Polym. Degrad. Stab. 1997, 58, 193–202. [Google Scholar] [CrossRef]
- Rahaman, M.S.A.; Ismail, A.F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 2007, 92, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Edie, D.D. The effect of processing on the structure and properties of carbon fibers. Carbon 1998, 36, 345–362. [Google Scholar] [CrossRef]
- Fitzer, E.; Frohs, W.; Heine, M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 1986, 24, 387–395. [Google Scholar] [CrossRef]
- Sjöholm, E.; Gellerstedt, G.; Drougge, R.; Norberg, I. Method for Stabilizing Lignin Fiber for Further Conversion to Carbon Fiber. U.S. Patent Application 14/373,887, 4 December 2014. [Google Scholar]
- Bohn, C.R.; Schaefgen, J.R.; Statton, W.O. Laterally ordered polymers: Polyacrylonitrile and poly(vinyl trifluoroacetate). J. Polym. Sci. 1961, 55, 531–549. [Google Scholar] [CrossRef]
- Hinrichsen, G.; Orth, H. Direct evidence of colloidal structure on drawn polyacrylonitrile. J. Polym. Sci. Part B Polym. Lett. 1971, 9, 529–531. [Google Scholar] [CrossRef]
- Sawai, D.; Kanamoto, T.; Yamazaki, H.; Hisatani, K. Dynamic Mechanical Relaxations in Poly(acrylonitrile) with Different Stereoregularities. Macromolecules 2004, 37, 2839–2846. [Google Scholar] [CrossRef]
- Colvin, B.G.; Storr, P. The crystal structure of polyacrylonitrile. Eur. Polym. J. 1974, 10, 337–340. [Google Scholar] [CrossRef]
- Heine, M. Optimierung der Reaktionsbedingungen von Thermoplastischen Polymer-Fasern zur Kohlenstofffaser-Herstellung am Beispiel von Polyacrylnitril; Falk Content & Internet Solutions: Karlsruhe, Germany, 1988. [Google Scholar]
- Liu, H.C.; Chien, A.-T.; Newcomb, B.A.; Bakhtiary Davijani, A.A.; Kumar, S. Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 2016, 101, 382–389. [Google Scholar] [CrossRef]
- Furushima, Y.; Nakada, M.; Takahashi, H.; Ishikiriyama, K. Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer 2014, 55, 3075–3081. [Google Scholar] [CrossRef]
Sample | IL (g) | PA (g) | Lignin (g) | Mass Ratio PAN/Lignin | Polymer Content (%) | Lignin Share (wt. %) |
---|---|---|---|---|---|---|
ND | 15 | 2.25 | 0 | - | 13.04 | 0 |
L1 | 15 | 2.25 | 1.12 | 2:1 | 18.37 | 33.50 |
L2 | 15 | 2.25 | 2.25 | 1:1 | 23.08 | 50 |
Samples | TC_bath | V1 | V2 | DR | |
---|---|---|---|---|---|
(°C) | (m·min−1) | (-) | |||
PAN/IL | PAN/Lignin/IL | Processing parameters | |||
Q1 = 0.11 (g·min−1) | Q2 = 0.09 (g·min−1) | ||||
HPAN1 | HPANL1 | 6 | 50 | ||
HPAN2 | HPANL2 | 25 | |||
HPAN3 | HPANL3 | 12.5 | |||
HPAN4 | HPANL4 | 6.75 | |||
HPAN5 | HPANL5 | 3 | |||
HPAN9 | HPANL6 | 10 | 20 | 2 | |
HPAN8 | HPANL7 | 30 | 3 | ||
HPAN10 | HPANL8 | 40 | 4 | ||
HPAN10V10 | HPANL8V10 | 40 | 10 * | ||
HPAN16 | HPANL9 | 20 | 10 | 20 | 2 |
HPAN17 | HPANL10 | 30 | 3 | ||
HPAN18 | HPANL11 | 40 | 4 |
DR | TC_bath | Fineness | Diameter | Tenacity | Tensile Modulus | Elongation at Break | Theoretically Determined Fiber Density | Tensile Strength * | Tensile Modulus * |
---|---|---|---|---|---|---|---|---|---|
(-) | (°C) | (dtex) | (µm) | (cN·tex−1) | (cN·tex−1) | (%) | (g·cm−3) | (MPa) | (GPa) |
PAN series | |||||||||
2 | 6 | 10.01 (0.37) | 34.4 (0.25) | 20.70 (0.34) | 1568.99 (68.73) | 89.34 (3.83) | 1.08 | 222.94 (3.66) | 16.90 (0.74) |
3 | 6.68 (0.21) | 27.6 (0.12) | 33.53 (0.86) | 2080.00 (156.17) | 69.2 (1.73) | 1.09 | 374.37 (9.60) | 23.22 (1.74) | |
4 | 5.05 (0.14) | 23.7 (0.11) | 41.38 (1.88) | 2863.65 (131.01) | 46.36 (2.62) | 1.14 | 473.69 (21.52) | 32.78 (1.49) | |
10 | 2.46 (0.07) | 16.5 (0.16) | 99.18 (2.99) | 5813.71 (277.50) | 12.73 (0.46) | 1.15 | 1141.04 (34.38) | 66.86 (3.19) | |
2 | 20 | 11.22 (0.38) | - | 17.00 (0.38) | 1389.57 (67.65) | 74.47 (2.35) | - | - | - |
3 | 8.74 (0.43) | - | 27.09 (0.65) | 1499.05 (107.30) | 73.73 (2.58) | - | - | - | |
4 | 10.97 (0.91) | - | 24.57 (0.96) | 334.82 (25.21) | 66.58 (1.76) | - | - | - | |
PAN/Lignin series | |||||||||
2 | 6 | 17.06 (0.56) | 44.3 (0.24) | 13.94 (0.21) | 1098.90 (74.29) | 88.56 (4.30) | 1.11 | 154.29 (4.87) | 12.16 (1.72) |
3 | 13.83 (0.51) | 36.1 (0.16) | 18.95 (0.33) | 1119.76 (67.97) | 86.78 (4.83) | - | 256.05 (9.32) | 15.13 (1.92) | |
4 | 9.34 (0.39) | 31.9 (0.23) | 26.13 (0.68) | 1930.8 (67.86) | 66.61 (1.98) | 1.16 | 305.36 (7.95) | 22.56 (0.79) | |
10 | 5.46 (0.18) | 24.9 (0.27) | 54.96 (1.73) | 2666.13 (111.24) | 13.27 (0.41) | 1.12 | 616.24 (19.50) | 29.89 (1.25) | |
2 | 20 | 19.72 (1.23) | - | 9.72 (0.36) | 446.42 (16.70) | 70.26 (2.72) | - | - | - |
3 | 19.39 (1.35) | - | 16.08 (0.30) | 489.94 (6.49) | 75.98 (2.19) | - | - | - | |
4 | 9.44 (0.39) | - | 18.92 (0.55) | 257.47 (45.25) | 67.43 (2.35) | - | - | - |
Sample | DR | TC. Bath | L2θ~17°e | L2θ~17°m | L2θ~17°e/L2θ~17°m | d2θ~17°m | L2θ~30° | d2θ~30°e | N2θ~17°e | N2θ~30°e | OD | fH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(-) | (°C) | (nm) | (-) | (Å) | (nm) | (Å) | (-) | (-) | (%) | (-) | ||
PAN series | ||||||||||||
HPAN3 | 0 | 6 | 2.79 | 2.54 | 1.10 | 5.3 | - | - | 6 | - | 32.6 | 0.51 |
HPAN9 | 2 | 3.05 | 2.29 | 1.33 | 5.3 | - | - | 7 | - | 53.3 | 0.55 | |
HPAN10 | 4 | 3.54 | 2.31 | 1.53 | 5.3 | - | - | 8 | - | 58.9 | 0.58 | |
HPAN10V10 | 10 | 12.83 | - | - | 5.2 | 7.70 | 3.0 | 26 | 26 | 94.7 | 0.73 | |
HPAN16 | 2 | 20 | 2.98 | 2.47 | 1.21 | 5.3 | - | - | 7 | - | 41.7 | 0.53 |
HPAN18 | 4 | 3.25 | 2.54 | 1.28 | 5.3 | - | - | 7 | - | 50.9 | 0.54 | |
PAN/Lignin series | ||||||||||||
HPANL3 | 0 | 6 | 1.83 | 1.81 | 1.01 | 5.3 | - | - | 4 | - | 14.2 | 0.50 |
HPANL6 | 2 | 1.97 | 1.47 | 1.34 | 5.3 | - | - | 5 | - | 39.9 | 0.53 | |
HPANL8 | 4 | 2.41 | 1.59 | 1.52 | 5.3 | - | - | 6 | - | 52.3 | 0.54 | |
HPANL8V10 | 10 | 7.16 | - | - | 5.2 | 4.92 | 3.0 | 15 | 17 | 88.9 | 0.69 | |
HPANL9 | 2 | 20 | 2.05 | 1.74 | 1.18 | 5.3 | - | - | 5 | - | - * | - * |
HPANL11 | 4 | 2.13 | 1.66 | 1.28 | 5.3 | - | - | 5 | - | 39.6 | 0.53 |
Kissinger Method | Flynn–Wall–Ozawa Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Peak ID | Slope | Error * | Activation energy | Error | R2 | Slope | Error * | Activation energy | Error | R2 |
(-) | (-) | (kJ·mol−1) | (-) | (-) | (-) | (kJ·mol−1) | (-) | |||
PAN series | ||||||||||
1 | −15,875.7 | ±1913.1 | 132 | ±16 | 0.958 | −7401.9 | ±827.1 | 135 | ±15 | 0.963 |
2 | −13,499.5 | ±1806.6 | 112 | ±15 | 0.948 | −6380.1 | ±782.2 | 116 | ±14 | 0.956 |
3 | −44,665.7 | ±10,431.7 | 371 | ±87 | 0.852 | −19,995.0 | ±4532.4 | 364 | ±82 | 0.860 |
PAN/Lignin series | ||||||||||
1′ | −21,549.1 | ±1288.1 | 179 | ±11 | 0.990 | −9855.7 | ±561.3 | 179 | ±10 | 0.990 |
2′ | −25,382.4 | ±2217.0 | 211 | ±18 | 0.977 | −11,556.0 | ±963.1 | 210 | ±17 | 0.979 |
3′ | −32,221.0 | ±2357.4 | 268 | ±20 | 0.984 | −14,585.1 | ±1024.6 | 265 | ±19 | 0.985 |
Shrinkage Type | Activation Energy | Error * | R2 |
---|---|---|---|
(kJ·mol−1) | (kJ·mol−1) | (-) | |
PAN series | |||
Physical | 92 | ±14 | 0.989 |
Chemical | 135 | ±3 | 0.999 |
PAN/Lignin series | |||
Physical | 289 | ±28 | 0.995 |
Chemical Phase I | 146 | ±11 | 0.997 |
Chemical Phase II | 100 | ±7 | 0.998 |
Process | Nitrogen | Air | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Activation Energy | Error * | R2 | A | k270 °C | Activation Energy | Error * | R2 | A | k270 °C | |
(kJ·mol−1) | (-) | min−1 | min−1 | (kJ·mol−1) | (-) | min−1 | min−1 | |||
PAN series | ||||||||||
Conversion of -C≡N to -C = N- | 146 | 2 | 0.999 | 1.49 × 1013 | 0.124 | 151 | 5 | 0.995 | 4.79 × 1013 | 0.133 |
Oxidation | - | - | - | - | - | 211 | 28 | 0.965 | 1.59 × 1019 | 0.072 |
Crosslinking | - | - | - | - | - | 117 | 7 | 0.993 | 2.55 × 109 | 0.013 |
PAN/lignin series | ||||||||||
Conversion of -C≡N to -C = N- | 163 | 1 | 0.999 | 1.15 × 1015 | 0.232 | 170 | 4 | 0.998 | 5.56 × 1015 | 0.250 |
Oxidation | - | - | - | - | - | 139 | 6 | 0.993 | 1.07 × 1012 | 0.041 |
Crosslinking | 236 | 19 | 0.975 | 3.39 × 1020 | 0.007 | 124 | 4 | 0.997 | 1.35 × 1010 | 0.017 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Aiti, M.; Das, A.; Kanerva, M.; Järventausta, M.; Johansson, P.; Scheffler, C.; Göbel, M.; Jehnichen, D.; Brünig, H.; Wulff, L.; et al. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds. Materials 2020, 13, 3687. https://doi.org/10.3390/ma13173687
Al Aiti M, Das A, Kanerva M, Järventausta M, Johansson P, Scheffler C, Göbel M, Jehnichen D, Brünig H, Wulff L, et al. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds. Materials. 2020; 13(17):3687. https://doi.org/10.3390/ma13173687
Chicago/Turabian StyleAl Aiti, Muhannad, Amit Das, Mikko Kanerva, Maija Järventausta, Petri Johansson, Christina Scheffler, Michael Göbel, Dieter Jehnichen, Harald Brünig, Lucas Wulff, and et al. 2020. "Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds" Materials 13, no. 17: 3687. https://doi.org/10.3390/ma13173687
APA StyleAl Aiti, M., Das, A., Kanerva, M., Järventausta, M., Johansson, P., Scheffler, C., Göbel, M., Jehnichen, D., Brünig, H., Wulff, L., Boye, S., Arnhold, K., Kuusipalo, J., & Heinrich, G. (2020). Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds. Materials, 13(17), 3687. https://doi.org/10.3390/ma13173687