Microstructure and Texture Evolutions During Deep Drawing of Mg–Al–Mn Sheets at Elevated Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deep Drawing
2.3. Microstructural Characterization and Mechanical Testing
3. Results
3.1. Initial Microstructure
3.2. Mechanical Behaviors
3.3. Deep Drawing Process
3.4. Microstructure Evolution During Deep Drawing
4. Discussion
5. Conclusions
- Twin-roll casted (TRC) sheets had much finer precipitates and smaller grains than ingot-casted (IC) sheets. At room temperature, TRC sheets demonstrated greater strength and elongation than IC sheets. At elevated temperatures of , and , the IC sheets revealed better elongation than TRC sheets.
- During deep drawing, the bottom bent region, cup wall, and top flange experienced different deformation history, and dominant deformation modes varied with position. Most of the thinning of the drawn cups was observed near the bent, and most thickening near the top flange.
- The deformation rate is important to activate tensile twins both near the bent area and the flange. Tensile twins are much more evident at a deformation rate of 50 mm/min than at 30 mm/min. IC sheets possessed more tensile twins than TRC sheets.
- The working temperature dominantly affects deformation mechanisms and a refined grain structure caused by DRX during deep drawing. In particular, at a temperature of , the refined DRXed grains in the flange is associated with twinning followed by DRX. At , the DRXed grains in the flange reflected greater activation of non-basal slips rather than twins.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agnew, S.R.; Yoo, M.H.; Tome, C.N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li and Y. Acta Mater. 2001, 49, 4277–4289. [Google Scholar] [CrossRef]
- Agnew, S.R.; Tome, C.N.; Brown, D.W.; Holden, T.; Vogel, S. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr. Mater. 2003, 48, 1003–1008. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Jain, A.; Agnew, S. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater. Sci. Eng. A 2007, 462, 29–36. [Google Scholar] [CrossRef]
- Chapuis, A.; Driver, J.H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 2011, 59, 1986–1994. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, R.; Chen, S.; Wang, W.; Wei, X. Effect of upper-die temperature on the formability of AZ31B magnesium alloy sheet in stamping. J. Mater. Proc. Technol. 2018, 257, 180–190. [Google Scholar] [CrossRef]
- Bohlen, J.; Nurnberg, M.; Senn, J.; Letzig, D.; Agnew, S. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007, 55, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Basu, I.; Al-Samman, T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 2014, 67, 116–133. [Google Scholar] [CrossRef]
- Watanabe, H.; Mukai, T.; Ishikawa, K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. J. Mater. Proc. Technol. 2007, 182, 644–647. [Google Scholar] [CrossRef]
- Gong, X.; Kang, S.B.; Li, S.; Cho, J.H. Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling. Mater. Des. 2009, 30, 3345–3350. [Google Scholar] [CrossRef]
- Cho, J.H.; Chen, H.-M.; Choi, S.-H.; Kim, H.-W.; Kang, S.-B. Aging effect on texture evolution during warm rolling of ZK60 alloys fabricated by twin-roll casting. Metal. Mater. Trans. A 2010, 41, 2575–2583. [Google Scholar] [CrossRef]
- Walde, T.; Riedel, H. Simulation of earing during deep drawing of magnesium alloy AZ31. Acta Mater. 2007, 55, 867–874. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, K.; Xu, Y.; Wang, Z.; Xu, Y.; Wang, Z. Deep-drawing of magnesium alloy sheets at warm temperatures. J. Mater. Proc. Technol. 2007, 185, 147–151. [Google Scholar] [CrossRef]
- Yang, L.; Mori, K.; Tsuji, H. Deformation behaviors of magnesium alloy AZ31 sheet in cold deep drawing. Nonferrous Met. Soc. China 2008, 18, 86–91. [Google Scholar] [CrossRef]
- Yi, S.; Bohlen, J.; Heineman, F.; Letzig, D. Mechanical anisotropy and deep drawing behavior of AZ31 and ZE10 magnesium alloy sheets. Acta Mater. 2010, 58, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, G.; Fan, J.; Roven, B. Deep drawability and drawing behavior of AZ31 alloy sheets with different initial texture. J. Alloys Compd. 2014, 615, 302–310. [Google Scholar] [CrossRef]
- Sun, L.; Bai, J.; Xue, F.; Tao, L.; Chu, C.; Meng, J. Exceptional texture evolution induced by multi-pass cold drawing of magnesium alloy. Mater. Des. 2017, 135, 267–274. [Google Scholar] [CrossRef]
- Ghaffari Tari, D.; Worswick, M.; Winkler, S. Experimental studies of deep drawing of AZ31b magnesium alloy sheet under various thermal conditions. J. Mater. Proc. Technol. 2013, 213, 1337–1347. [Google Scholar] [CrossRef]
- Yoshihara, S.; Yamamoto, H.; Manabe, K.; Nishimura, H. Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique. J. Mater. Proc. Technol. 2003, 143–144, 612–615. [Google Scholar] [CrossRef]
- Cho, J.H.; Jeong, S.S.; Kang, S.B. Deep drawing of ZK60 magnesium sheets fabricated using ingot and twin-roll casting methods. Mater. Des. 2016, 110, 214–224. [Google Scholar] [CrossRef]
- Biswas, S.; Suwas, S.; Sikand, R.; Gupta, A. Analysis of texture evolution in pure magnesium and the magnesium alloy AM30 during rod and tube extrusion. Mater. Sci. Eng. A 2011, 528, 3722–3729. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, S.; Cho, J. Microstructural evolution of twin-roll cast Mg-3Al-0.5Mn-0.2Mm alloys during warm rolling and subsequent annealing. J. Mater. Process. Technol. 2010, 210, 1270–1275. [Google Scholar] [CrossRef]
- Chang, L.; Kang, S.; Cho, J. Influence of strain path on the microstructure evolution and mechanical properties in AM31 magnesium alloy sheets processed by differential speed rolling. Mater. Des. 2013, 44, 144–148. [Google Scholar] [CrossRef]
- Ma, Q.; Li, B.; Whittington, W.; Oppedal, A.; Wang, P.; Horstemeyer, M. Texture evolution during dynamic recrystallization in a magnesium alloy at 450 °C. Acta Mater. 2014, 67, 102–115. [Google Scholar] [CrossRef]
- Aryshenskii, E.; Hirsch, J.; Yashin, V.; Konovalov, S.; Chitnaeva, E. Study of the recrystallization behaviour of the aluminium 1565ch alloy during hot rolling of the as cast structures. Mater. Res. Express 2019, 6, 076524. [Google Scholar] [CrossRef]
- Aryshenskii, E.; Hirsch, J.; Konovalov, S.; Prahl, U. Specific features of microstructural evolution during hot rolling of the as-cast magnesium-rich aluminum alloys with added transition metal elements. Metall. Mater. Trans. A 2019, 50, 5782–5799. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, H.W.; Cho, J.H. Process parameters and roll separation force in horizontal twin rollcasting of aluminum alloys. J. Mater. Proc. Technol. 2015, 218, 48–56. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, S.B.; Cho, J.H. Microstructure and mechanical properties of Mg-Al-Mn-Ca alloy sheet produced by twin roll casting and sequential warm rolling. J. Alloys Compd. 2011, 509, 704–711. [Google Scholar] [CrossRef]
- Mackenzie, L.; Pekguleryuz, M. The influence of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys. Mater. Sci. Eng. A 2008, 480, 189–197. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, H.W.; Kang, S.B.; Han, T.S. Bending behavior, and evolution of texture and microstructure during differential speed warm rolling of AZ31B magnesium alloys. Acta Mater. 2011, 59, 5638–5651. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Wang, J.; Barnett, M.R.; Tome, C.N. Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations. Proc. R. Soc. A 2012, 468, 1496–1520. [Google Scholar] [CrossRef] [Green Version]
- Lentz, M.; Risse, M.; Schaefer, N.; Reimers, W.; Beyerlein, I. Strength and ductility with double twinning in a magnesium alloy. Nat. Commun. 2016, 7, 11068. [Google Scholar] [PubMed]
- Ferguson, J.B.; Lopez, H.F.; Cho, K.; Kim, C.-S. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys. Metals 2016, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Zakarian, D.; Khachatrian, A.; Firstov, S. Universal temperature dependence of Young’s modulus. Met. Powder Rep. 2019, 4, 204–206. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Kim, T.H.; Kim, Y.S.; Hamad, K.; Ko, Y.G.; Kim, J.-G. Dynamic recrystallization behavior of AZ31-0.5Ca magnesium alloy during warm rolling. Mater. Sci. Eng. A 2019, 764, 138085. [Google Scholar] [CrossRef]
- He, J.; Mao, Y.; Lu, S.; Xiong, K.; Zhang, S.; Jiang, B.; Pan, F. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling. Mater. Sci. Eng. A 2019, 760, 174–185. [Google Scholar] [CrossRef]
- Chun, Y.B.; Davies, C.H.J. Investigation of Prism <a> Slip in Warm-Rolled AZ31 Alloy. Metall. Mater. Trans. A 2011, 42, 4113–4125. [Google Scholar]
- Chapuis, A.; Liu, Q. Investigating the temperature dependency of plastic deformation in a Mg-3Al-1Zn alloy. Mater. Sci. Eng. A 2018, 725, 108–118. [Google Scholar] [CrossRef]
- Gottstein, G.; Samman, T.A. Texture development in pure Mg and Mg alloy AZ31. Mater. Sci. Forum. 2005, 495–497, 623–632. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Yan, H.; Lu, S.H.; Nakata, T.; Lao, C.S.; Chen, R.S.; Kamado, S.; Han, E.H. Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion. Sci. Rep. 2018, 8, 16800. [Google Scholar] [CrossRef]
- Cho, J.H.; Jeong, S.S.; Kim, H.W.; Kang, S.B. Texture and microstructure evolution during the symmetric and asymmetric rolling of AZ31B magnesium alloys. Mater. Sci. Eng. A 2013, 566, 40–46. [Google Scholar] [CrossRef]
- Guan, D.; Rainforth, W.M.; Wynne, L.M.B.; Gao, J. Twin recrystallization mechanism and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017, 126, 132–144. [Google Scholar] [CrossRef]
- Cho, J.-H.; Rollett, A.D.; Oh, K.H. Determination of a mean orientation in electron backscatter diffraction measurements. Metall. Mater. Trans. A 2005, 36, 3427–3438. [Google Scholar] [CrossRef]
- Kumar, M.A.; Beyerlein, I.J.; Tome, C.N. Grain size constraints on twin expansion in hexagonal close packed crystals. J. Appl. Phys. 2016, 120, 155105. [Google Scholar] [CrossRef] [Green Version]
- Noda, M.; Ito, T.; Gonda, Y.; Mori, H.; Funami, K. Texture, microstructure, and mechanical properties of calcium containing flame-resistant magnesium alloy sheets produced by twin-roll casting and sequential warm rolling. In Magnesium Alloys—Properties in Solid and Liquid States; InTech: Rijeka, Croatia, 2014; Chapter 2; pp. 49–65. [Google Scholar]
- Nie, J.F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Shanthraj, P.; Robson, J.D.; Diehl, M.; Dong, S.; Dong, J.; Ding, W.; Raabe, D. On the interaction of precipitates and tensile twins in magnesium alloys. Acta Mater. 2019, 178, 146–162. [Google Scholar] [CrossRef]
- Mosayebi, M.; Zarei-Hanzaki, A.; Abedi, H.R.; Barabi, A.; Jalali, M.S.; Ghaderi, A.; Barnett, M. The correlation between the recrystallization texture and subsequent isothermal grain growth in a friction stir processed rare earth containing magnesium alloy. Mater. Charact. 2020, 163, 110235. [Google Scholar] [CrossRef]
AM31 | |
---|---|
Punch diameter | 37 |
Specimen thickness | 0.6 |
Drawing speed | 30, 40, 50 |
Temperature | |
Blank holding force | |
Blank diameter | 74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.-H.; Han, S.-H.; Lee, G.Y. Microstructure and Texture Evolutions During Deep Drawing of Mg–Al–Mn Sheets at Elevated Temperatures. Materials 2020, 13, 3608. https://doi.org/10.3390/ma13163608
Cho J-H, Han S-H, Lee GY. Microstructure and Texture Evolutions During Deep Drawing of Mg–Al–Mn Sheets at Elevated Temperatures. Materials. 2020; 13(16):3608. https://doi.org/10.3390/ma13163608
Chicago/Turabian StyleCho, Jae-Hyung, Sang-Ho Han, and Geon Young Lee. 2020. "Microstructure and Texture Evolutions During Deep Drawing of Mg–Al–Mn Sheets at Elevated Temperatures" Materials 13, no. 16: 3608. https://doi.org/10.3390/ma13163608
APA StyleCho, J.-H., Han, S.-H., & Lee, G. Y. (2020). Microstructure and Texture Evolutions During Deep Drawing of Mg–Al–Mn Sheets at Elevated Temperatures. Materials, 13(16), 3608. https://doi.org/10.3390/ma13163608