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Abstract: Texture and microstructure evolution of ingot and twin-roll casted Mg–Al–Mn magnesium
sheets were examined during deep drawing at elevated temperatures. The twin-roll casted sheets
possessed smaller grain sizes and weaker basal intensity levels than the ingot-casted sheets.
The strength and elongation at room temperature for the twin-roll casted sheets were greater than
those of the ingot-casted sheets. At elevated temperatures, the ingot-casted sheets showed better
elongation than the twin-roll casted sheets. Different size and density of precipitates were examined
using transmission electron microscopy (TEM) for both ingot-casted and twin-roll-casted sheets.
The deep drawing process was also carried out at various working temperatures and deformation
rates, 225 ◦C to 350 ◦C and 30 mm/min to 50 mm/min, respectively. The middle wall part of cups
were mainly tensile deformation, and the lower bent regions of drawn cups were most thinned
region. Overall, the ingot-casted sheets revealed better deep drawability than the twin-roll casted
sheets. Microstructure and texture evolution of the top, middle and lower parts of drawn cups were
investigated using electron backscatter diffraction. Increased deformation rate is important to activate
tensile twins both near the bent and flange areas. Ingot casted sheets revealed more tensile twins than
twin-roll casted sheets. Increased working temperature is important to activate non-basal slips and
produce the DRXed grain structure in the flange. Dynamic recrystallization were frequently found in
the top flanges of the cups. Both tensile twins and non-basal slips contributed to occurrence of the
dynamic recrystallization in the flange.

Keywords: Mg–Al–Mn; magnesium alloys; deep drawing; texture and microstructure; EBSD;
dynamic recrystallization

1. Introduction

Magnesium alloys have limited workability, owing to the limited slip systems at room
temperature [1–3]. The critical resolved shear stresses (CRSS) of slip and twinning in magnesium
alloys strongly depend on the temperature [4,5]. At elevated temperatures, non-basal slip systems can
be activated, in addition to basal slips. Accordingly, forming processes can easily be carried out [6].

Non-basal or weak-basal textures are preferred to improve the workability of magnesium sheets.
Weakened basal textures can be obtained by adding rare earth metals [7,8]. Instead of a symmetric
rolling process, asymmetric rolling is reportedly effective when seeking to alter the microstructures
and textures of sheets, i.e., lowering the basal fiber and refining the grain size [9–11].

The initial texture and mechanical anisotropy of wrought magnesium sheets strongly affect the
drawability [12–17]. In addition, the working temperature, head speed, blank holding force (BHF),
and amount of lubrication are important for successful drawing [12,18]. Local heating and cooling
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techniques can improve the formability [19]. The deep drawing of ZK60 alloys has been investigated,
and it was found that twin-roll casted (TRC) sheets had better deep-drawability than ingot-casted (IC)
sheets [20]. Dynamic recrystallization (DRX) and peak splitting along the rolling direction (RD) were
mainly observed in the TRC sheets, which implied that these factors contribute to better drawability.

The Mg–Al–Mn alloying system possesses AlMn dispersions. This results in a smaller grain
size than pure magnesium alloys [21]. In the Mg–3Al–0.5Mn–0.2Mm system, TRC sheets show better
yield and tensile strength levels than IC sheets [22]. Using differential speed rolling in the AM31
system, improved strength, and ductility were realized through grain refinement and a weakened
basal texture [23]. DRX behavior during the uniaxial compression of the AM30 system was also
investigated in detail [24]. At a low strain rate of 0.1 s−1, effect of twinning on the microstructure and
textural evolution was negligible. At a greater strain rate of 0.5 s−1, a high volume fraction of twins
was activated, but they were consumed by DRX with strain. Dominant deformation modes varied
considerably, depending on the loading direction along the extrusion direction or radial direction.
The effect of fine second-phase particles such as Al-Mn intermetallics on microstructural evolution
during annealing was also found in Al alloys [25,26]. The second-phase particles had a strong effect on
microstructural evolution during the hot deformation and recrystallization of the as-cast Al structures.

In this study, flow behaviors under uniaxial tension of Mg-Al-Mn sheets fabricated by TRC
and IC processes were examined at room and elevated temperatures. Deep drawing was also
carried out on two different Mg-Al-Mn sheets under various working temperatures and punch
speeds. Using EBSD (electron backscatter diffraction) and TEM (transmission electron microscopy),
the microstructure, texture and second phases were characterized and examined to gain a better
understanding of deformation behaviors of the Mg-Al-Mn sheets. In particular, the characteristics
of textural and microstructural evolution during deep drawing were investigated based on EBSD in
detail. The variation of deformation modes was discussed according to different deformation history
during drawing.

2. Materials and Methods

2.1. Materials

The chemical compositions of the magnesium alloys used here were Mg—3.3 Al—0.78 Mn (AM31)
in terms of the weight. A twin-roll caster with a roll diameter of 300 mm was used to fabricate the
strips. Detailed information about TRC process has been discussed in reference [27]. Molten alloy
with an initial temperature of 750 ◦C was used for the TRC process. The rolling speed during the
TRC process was 3 rpm (revolution per minute). The strips were approximately 4.0 mm thick and
180 mm wide. In order to fabricate the IC strips, molten alloy at 720 ◦C was poured into a steel mold
180 mm long, 160 mm wide, and 25 mm thick. The IC slab was heat-treated at 400 ◦C for 20 hrs for
homogenization, after which it was cut to a thickness of 4 mm for a comparison with the TRC strips.

To fabricate the sheets for deep drawing, approximately seven passes of warm rolling were
carried out on the slabs and strips with a thickness of 4 mm. The thickness of the workpieces was
reduced from 4 mm to 0.6 mm. Working rolls with a diameter of 200 mm were preheated to 250 ◦C
and operated at a speed of 3.5 rpm. Before warm rolling, the workpieces were heated at 350 ◦C for
30 min. The intermediate annealing time and temperature between the passes were 5 min and 350 ◦C,
respectively. Final annealing was carried out on the sheets with a thickness of 0.6 mm for 1 hr at 350 ◦C.

2.2. Deep Drawing

Deep drawing was carried out using a universal sheet testing machine (USTM, YoungJin Precision,
Korea). The punch diameter was 37 mm and the inner diameter of the die was 39 mm. The diameter of
the flange was 74 mm and limit drawing ratio was 2.0. The punch speeds during drawing step were 30,
40, and 50 mm/m, and the working temperatures ranged from 200 ◦C to 350 ◦C. The die was heated
to a specific temperature and the workpieces were laid on it. The workpieces were then held about
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5 min to reach the temperature of the die. BHF during drawing was about 5 ∼ 12 kN, and it varied
with deep drawing conditions, as summarized in Table 1. Detailed information on deep drawing has
also been presented in reference [20]

Table 1. Deep drawing conditions.

AM31

Punch diameter [mm] 37
Specimen thickness [mm] 0.6
Drawing speed [mm/min] 30, 40, 50
Temperature [◦C] 200 ∼ 350
Blank holding force [kN] 5 ∼ 12
Blank diameter [mm] 74

2.3. Microstructural Characterization and Mechanical Testing

The microstructure and second phases were characterized using SEM (scanning electron
microscopy) and TEM (transmission electron microscopy). Microstructure and microtexture analyses
were carried out using an automated high-resolution EBSD (HKL Channel5, Oxford, UK) attached to
the SEM device (JEOL7001F, Jeol, Tokyo, Japan). The EBSD samples were mechanically polished and
then electropolished using a solution of butyl cellosolve (50 mL), ethanol (10 mL), and perchloric acid
(5 mL) at a voltage of 10 V and temperature of −15 ◦C to −20 ◦C. The step size for EBSD mapping was
0.5 µm. The precipitates were examined using TEM (JEM-2100F, Jeol, Tokyo, Japan) operating at 200 kV.
The TEM samples were prepared by mechanical polishing down to a thickness of approximately
100 µm, followed by electropolishing using methanol (60 mL), glycerin (30 mL), and nitric acid (10 mL).
Electropolishing was carried out at a temperature and voltage of −10 ◦C to −15 ◦C and 20 V to 25 V,
respectively. These samples were finalized by ion thinning to prevent oxidation or other types of surface
contamination. A quantitative analysis was carried out using energy dispersive spectroscopy (EDS).

Uniaxial tension tests (ASTM E8 standard) were carried out along the rolling direction (RD)
using a standard universal testing machine (Instron 4206, Norwood, MA, USA). The gauge length
and width of the samples were 12.5 mm and 3 mm. The strain rates were 0.001/s and 0.002/s at
various temperatures.

3. Results

3.1. Initial Microstructure

Various second phases and their EDS results for Mg–Al–Mn sheets are presented in Figure 1.
The size and density of the second particles depend on the IC and TRC fabrication processes. The IC
samples contain larger particles than the TRC samples. Instead, numerous refined particles are
observed in the TRC samples. The second particles in the Mg–Al–Mn sheets mainly consist of Al and
Mn, implying Al8Mn5 dispersions [28].
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Figure 1. Micrographs of various second phases and their energy dispersive spectroscopy (EDS) results.
(a) TRC, and (b) IC.

Inverse pole figure maps (IPFs), pole figures (PFs), and orientation distribution function (ODF) of
the initial Mg-Al-Mn sheets are shown in Figure 2. Grain identification angles (GID) of 2◦ and 15◦ were
used for the low and high angle grain boundaries, respectively. The TRC and IC sheets both mainly
possessed strong basal orientations. The overall grain sizes of the TRC sheets (16 µm) are smaller than
those of the IC sheets (25 µm), as shown in Figure 2. Detailed crystallographic information can be
better understood from the PFs. The rolling direction (RD), transverse direction (TD), and normal
direction (ND) are located in the right, top, and center of the 0001 PF. The peak intensity of the TRC
sheets is lower than that of the IC sheets. Both the TRC and IC sheets showed a split of the basal peak
along the rolling direction (RD). A pyramid 〈c + a〉 slip can split the basal intensity toward the RD and
weaken the basal texture during hot rolling [1]. At elevated temperatures, the CRSS of non-basal slips
usually decreases. Double twinning of < 101̄1 > − < 101̄2 >, with < 101̄1 > compressive twinning
and followed by < 101̄2 > tensile twinning also provides a peak split along the RD [29,30]. Double
twinning mainly possesses misorientation angles of 37.5 ◦ or 30.1 ◦ about the common zone axis of
< 112̄0 > for magnesium [31,32]. ODFs of initial sheets are also presented. When considering rolled
magnesium sheets, hexagonal crystal and orthorhombic sample symmetries are assumed in Euler
space, i.e., {0–90◦, 0–90◦, 0–60◦}. Strong peaks are located along φ = 15◦–20◦ in ODF sections, and
this implies deviation of basal fiber from the ideal position (φ = 0◦) due to split.
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(a) (b)

(c) (d)

(e) (f)

1

Figure 2. Inverse pole figures (IPFs) maps, pole figures (PFs) and orientation distribution functions
(ODFs) of the initial sheets. PF contours: 1, 2, 3, 5, 7, 10. ODF contours: 1, 2, 3, 4, 5, 6. IPFs for (a) TRC,
and (b) IC. 0001 PFs for (c) TRC, and (d) IC. ODFs for (e) TRC, and (f) IC.
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3.2. Mechanical Behaviors

The typical flow curves of the Mg–Al–Mn sheets used are presented in Figure 3. The TRC samples
show greater strength and elongation than the IC samples at room temperature. The tensile strengths of
the TRC and IC samples are approximately 290 MPa and 210 MPa, respectively, and their corresponding
elongations are 25% and 22%. It has been reported that TRC samples possess both greater strength and
elongation than IC samples in ZK60 alloys [20] at room temperature. In Mg–Al–Mn alloys with Ca or
misch metals, however, strength of TRC samples is greater than that of IC, and elongation of TRC is
smaller than that of IC [22,28]. They seem to comply with trade-off relationship between strength and
elongation. At elevated temperatures of 225 ◦C and 350 ◦C, this studies on Mg–Al–Mn are similarly
reflecting the previous results of Mg-Al-Mn alloys with Ca and misch metals. The elongations of the
IC samples are greater than those of TRC samples. Young’s modulus of metals usually decreases
with increase in temperature, although it has some variations due to second-phase particles and
defects [33,34]. Overall, these trends are also found in Mg–Al–Mn alloys. Figure 4 summarized
mechanical properties of Mg-Al-Mn sheets. Increased elongation of IC sheets at elevated temperatures
is noticeable.

(a) (b)

1

Figure 3. Tensile stress-strain curves of Mg–Al–Mn sheets at various temperatures and strain rates.
(a) TRC, and (b) IC.

Figure 4. Mechanical properties of Mg-Al-Mn sheets. UTS: ultimate tensile strength [MPa]. YS: yield
strength [MPa]. (a) TRC, and (b) IC.
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3.3. Deep Drawing Process

Photos of the drawn cups made of Mg-Al-Mn sheets are shown in Figure 5. Working windows
of deep-drawing are presented according to various temperatures and deformation rates, as shown
in Figure 6. At 200 ◦C, both TRC and IC sheets failed during deep drawing. At 225 ◦C, the IC
sheets revealed better drawability than TRC sheets with cracks. At temperatures greater than 225 ◦C,
the deep drawing process was successful with the IC sheets. It appears that the improved elongation
of IC samples at elevated temperatures resulted in better workability when considering the flow
behaviors as shown in Figure 3. There were some wrinkles in the top flange of the TRC cups, even at
350 ◦C. Those wrinkles in the top flange is related to module design (friction or blank-holder force)
and materials’ mechanical properties (such as anisotropy and work hardening and microstructural
inhomogeneity). Although it was possible to reduce the wrinkles in the top flange with more delicate
module design, the TRC sheets resulted in minor wrinkles in the top flange during deep drawing.
Note that no wrinkles were observed in the flange of the IC sheets. This seems to be associated with
different mechanical responses of the TRC sheets from those of IC sheets at the temperature. More
detailed microstructural features of drawn cups will be discussed later.

30mm/min 40mm/min 50mm/min

200℃

225℃

250℃

275℃

300℃

325℃

350℃

strip ingot
30mm/min 40mm/min 50mm/min

200℃

225℃

250℃

275℃

300℃

325℃

350℃

Photos of Drawn Cups of AM31 Alloys

(a) (b)

Figure 5. Drawn cups made of Mg–Al–Mn sheets at various temperatures and deformation rates.
(a) TRC, (b) IC.

Figure 7 shows the variations of the thickness during the deep drawing of the Mg-Al-Mn sheets.
From the bottom to the top flange, the thickness variations of the TRC and IC sheets appear to be
similar to each other. The bottom (Bot.), Part 1 (P1), Part 2 (P2), and Part 3 (P3) regions are aligned
with the rolling direction of the sheets. The EBSD measurements were carried out from each position,
as specified in the small inset. Each region reflects different deformation history during deep drawing
process. Part 1 is the bent region corresponding to the punch radius. Part 2 is the middle region
of the drawn cup. Tensile loading was mostly applied to the cup wall and, thus, thinning of the
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wall could be clearly observed. The narrowest thickness of the wall was also found between Part 1
and Part 2. Most instances of failure or necking occur typically in this region. Past Part 2, the wall
thickness increased when compared to the initial thickness, as the compressive metal flow along the
circumferential direction thickens the flange part. Occasionally, this part experiences ironing between
the tool and the punch due to the increased thickness. In this experiment, large clearance was allowed
to avoid the ironing effect. Part 3 corresponds to the top flange, where most of the thickening was
observed due to the severe compressive loading along the circumferential direction. This results in
tensile twinning in the Mg sheets. Microstructure evolution during deep drawing will be discussed
later in more detail.
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Figure 6. Deep drawability of Mg–Al–Mn sheets at various temperatures and deformation rates. ×:
failed,©: succeeded,4: wrinkled. (a) TRC, (b) IC.

Figure 7. Variations of thickness during deep drawing.



Materials 2020, 13, 3608 9 of 19

3.4. Microstructure Evolution During Deep Drawing

Figure 8 presents inverse pole figure maps of Part 1, Part 2, and Part 3 of drawn cups processed at
a punch head speed of 30 mm/min and at a temperature of 225 ◦C. The evolution of the microstructure
and texture during the deep drawing process was investigated by means of EBSD. Grain identification
angles of 2◦ and 15◦ were used for the low and high angle grain boundaries, respectively. Three
different twin boundaries are specified with contrasting colors. Tensile twin boundary (86◦ < 112̄0 >)
is specified in green, compressive twin boundary (56◦ < 112̄0 >), blue, and double twin boundary
(38◦ < 112̄0 >), yellow. The initial grain size of the TRC sheet was smaller than that of the
IC sheet, and the microstructure of the drawn cup reflected this. As discussed earlier, each part
reflected the corresponding deformation history during deep drawing. For a comparison of only
the crystallographic reorientation without rigid body rotation caused by the working dies, a sample
coordinate system is made to adhere to the sheet. Part 1 experienced bending due to curvature of the
punch radius. The actual strain was not significant in the Part 1 and minor textural evolution was
usually observed. Figure 8a illustrates rather off-basal orientations, which implies some activation
of non-basal slips during bending of the TRC sheets. Part 2 mainly experienced tensile deformation,
and this resulted in slip deformation rather than twinning. Part 3 near the flange showed drastic
reorientation due to the severe compressive loading along the circumferential direction. Both large
grains with tensile twin boundaries and refined small grains were observed due to severe deformation
in Part 3, as shown in Figure 8c. In particular, equi-axed small grains were found along with deformed
large grains in the TRC sheet, implying DRX. The second particles in Mg alloys enhanced the activity
of non-basal slips and promoted the DRX [35]. Strong activation of tensile twins also contributes to
DRX in Mg–Al–Mn (AM30) alloys [24]. Both non-basal slips and tensile twins can cause DRX in the
flange during cup drawing. When compared to the TRC sheet case, the IC outcome evidently revealed
remained initial orientations of basal fibers during bending, as shown in Figure 8d. Small grains were
also found along with large grains in Part 3 of the IC sheet. The volume of small grains in Part 3 of the
IC sheet was limited, as compared to that of TRC sheet.

Figure 8. IPF maps of Part 1, Part 2, and Part 3 regions of drawn cups. The punch speed and working
temperature during deep drawing were 30 mm/min and 225 ◦C, respectively. Each twin boundary of
tensile, compressive, and double twins is specified with green, blue, and yellow. (a) Part 1, (b) Part 2,
and (c) Part 3 for TRC sheets. (d) Part 1, (e) Part 2, and (f) Part 3 for IC sheets.
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More detailed texture evolution is better understood in PFs, as shown in Figure 9. In the TRC
case, the PF of Part 1 has some peak intensities along the ND to the TD. Peak split along the TD reflects
activation of prismatic 〈a〉 slips [29,36,37]. Part 2 revealed a wide basal texture, which deviated from
the ND. In the flange of Part 3, strong peak intensity around the TD implies active occurrence of
tensile twinning, as shown in Figure 9c. The thickening of the sheets can contribute to the activation of
tensile twinning of Mg sheets. Crystallographically, tensile twinning can be activated under tensile
loading throughout the thickness of Mg-Al-Mn sheets with strong basal textures. Basal intensity rarely
remained in the center of the 0001 PF of Part 3. Most of refined grains in the TRC sheets implied DRX
after tensile twinning. In the IC case, basal fibers remained in Part 1 and Part 2. In Part 3, reorientation
that was caused by non-basal slips and minor tensile twinning seemed to occur. Non-basal slip of
prismatic 〈a〉 is more likely responsible for peak spreading along the TD. Refined DRX in the IC
sheet seemed to be associated with the non-balsa slips, rather than tensile twins. Note that major
deformation modes differ in the bent and flange of the TRC and IC sheets.

Figure 9. 0001 PFs computed from EBSD maps, as shown in Figure 8. Contours: 1, 2, 3, 5, 7, 10, 15, 20.
(a) Part 1, (b) Part 2, and (c) Part 3 for TRC sheets. (d) Part 1, (e) Part 2, and (f) Part 3 for IC sheets.

The texture and microstructure evolution during deep drawing at a punch speed of 30 mm/min at
a temperature of 350 ◦C are shown in Figure 10. Overall, the microstructural features are similar to the
earlier outcomes, as shown in Figure 8, except Part 3, where the most severe deformation (thickening)
occurred. It should be noted that tensile twinning was reduced in Part 3 for both TRC and IC as
compared to that at low temperature of 225 ◦C. The punch speeds are identical in both cases and thus
the microstructural difference between them appears to come from the increased working temperature.
The increase in the working temperature can affect the CRSS of the deformation modes. This implies
that non-basal slip systems to accommodate external compressive loading along the circumferential
direction are activated instead of twinning.

Based on the PFs computed from the EBSD data in Figure 10, as shown in Figure 11, it was found
that the crystallographic reorientation during drawing at 350 ◦C did not differ greatly from that at
225 ◦C, except Part 3. It is evident that less twinning occurred in Part 3 at 350 ◦C when compared to that
at 225 ◦C. Based on the slip system activity, splitting of the basal intensity along the TD is associated
with the activation of the prismatic < a > slip system. At an increased temperature, prismatic < a >

slip can be more easily activated and result in the formation of a peak split [5,38].
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When increasing the deformation rate, the microstructural evolution can be affected. Figure 12
presents the microstructure and pole figures at an increased deformation rate of 50 mm/min at 225 ◦C.
Some tensile twin boundaries are found in Part 1 of the TRC sample (Figure 12a). Most evident
tensile twin boundaries are observed in the IC sample, as shown in Figure 12e. Those tensile twin
boundaries are rarely found at a deformation rate of 30 mm/min (Figure 8a). In part 3, at the increased
deformation rate of 50 mm/min, IPFs of both the TRC and the IC sheets provide a strong evidence
of DRX. Figure 12c,g reveal that refined grain structures arose in both the TRC and IC sheets due to
DRX. Deformed large grains are also observed along with DRX grains. It is likely that the increased
deformation rate from 30 mm/min to 50 mm/min mainly contributes to the increases in the tensile
twinning and followed by DRX.

Figure 10. IPF maps of Part1, Part 2 and Part3 regions of drawn cups. The punch speed and working
temperature were 30 mm/min and 350 ◦C, respectively. (a) Part 1, (b) Part 2, and (c) Part 3 for TRC
sheets. (d) Part 1, (e) Part 2, and (f) Part 3 for IC sheets.

Figure 11. 0001 PFs computed from EBSD maps, as shown in Figure 10. Contours: 1, 2, 3, 5, 7, 10, 15,
20. (a) Part 1, (b) Part 2, and (c) Part 3 for TRC sheets. (d) Part 1, (e) Part 2, and (f) Part 3 for IC sheets.
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0001 PFs computed from the EBSD maps are also presented. Peaks near the TD imply tensile
twinning activation, and Figure 12b illustrates minor twinning in Part 1 of the TRC sheet. In fact,
deep drawing of the TRC sheet at a deformation rate of 50 mm/min at 225 ◦C was unsuccessful, and
there was a crack near Part 1 (bent region). Drawing of the IC sheet under the same condition of Part 1
was successful. Strong peaks that are near the RD caused by tensile twinning are confirmed in the IC
sheet, as shown in Figure 12f. At a high deformation rate, twinning activation can play an important
role in accommodating external loading. It is feasible that limiting the active deformation modes
will result in a failure in the TRC sheet. The activation of tensile twins in the IC sheet is dominant,
compared to that of the TRC sheet. It surely supports that larger grain size is favorable for twinning
activation. It appears that active tensile twins improved the bendability near the bent region. In Part 3,
strong off-basal textures were observed in both TRC and IC sheets, which originated from tensile
twinning and non-basal slips.

Figure 12. IPF maps and computed 0001 PFs of Part1, and Part3 regions of drawn cups. The punch
speed and working temperature were 50 mm/min and 225 ◦C, respectively. Contours: 1, 2, 3, 5, 7, 10,
15, 20. TRC sheets: (a) IPF, and (b) 0001 PF for Part 1; (c) IPF, and (d) 0001 PF for Part 3. IC sheets:
(e) IPF, and (f) 0001 PF for Part 1; (g) IPF, and (h) 0001 PF for Part 3.

At the deformation rate of 50 mm/min, the microstructure at a temperature of 350 ◦C is different
from that at 225 ◦C (Figure 13). Tensile twins in Part 1 are relatively reduced at 350 ◦C when compared
to those at 225 ◦C. DRX in Part 3 also varies with working temperature. The equi-axed grains at 350 ◦C
are much larger than those at 225 ◦C. The equi-axed grain structures at 350 ◦C at the deformation
rate of 50 mm/min (Figure 13c,g) have the similarity to those at 350 ◦C at the deformation rate of
30 mm/min (Figure 10c,f). It seems that equi-axed grains correspond to the region that was caused by
DRX, followed by grain growth, which is more substantial at 350 ◦C than at 225 ◦C due to the increased
working temperature. Deformed regions mainly correspond to the large initial grains, inside which
low angle misorientations and tensile twins are observed in the TRC and IC samples, respectively.
Increasing the temperature from 225 ◦C to 350 ◦C caused a change in the deformation mechanism in
the flange, and the twinning activation was reduced. The 0001 PFs also reflected this change in the
crystallographic reorientations of off-basal textures.
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Figure 13. IPF maps and computed 0001 PFs of Part1, and Part3 regions of drawn cups. The punch
speed and working temperature were 50 mm/min and 350 ◦C, respectively. Contours: 1, 2, 3, 5, 7, 10,
15, 20. TRC sheets: (a) Part 1, and (b) Part 3 for IPFs; (c) Part 1, and (d) Part 3 for PFs. IC sheets: (e) Part
1, and (f) Part 3 for IPFs; (g) Part 1, and (h) Part 3 for PFs.

4. Discussion

The deformation of Mg alloys at elevated temperatures frequently results in DRX.
The crystallographic orientations of newly recrystallized grains are similar to those of the deformed
grain structure, which implies continuous DRX [39,40]. Static recrystallization of Mg alloys also
revealed little change of crystallographic texture, although recrystallization near twinning or shear
band contributed to texture randomization or weakening [41,42]. In this study, Mg–Al–Mn alloys
also disclosed DRX during deformation at elevated temperatures. Based on initial microstructure
of Mg–Al–Mn sheets, two different misorientation measures were computed in Figure 14. Grain
orientation spread (GOS) and scalar orientation spread (SOS) can be used as measures to differentiate
deformed and recrystallized grains. Each measure expresses the magnitude of misorientation among
all pixels in a grain and that of between each pixel and the average orientation, respectively [43].
Misorientation measure depends on grain identification angles (GID). Figure 14 represents the volume
fraction of deformed and recrystallized grains, based on each criterion of GOS and SOS. Initial
microstructure can be assumed to be recrystallized and, thus, the criterion to collect more than
approximately 95% of recrystallized grains can be used. The criterion of SOS misorientation measure
of 5◦ and GID angle of 10◦ looks reasonable for the purpose.

Variations of the large and small grains reveal microstructural features of deformation and DRX.
The criterion for recrystallized grains obtained from Figure 14 and small grains less than 300 pixels
are used to detect DRX grains. Figure 15 summarize volume fraction of DRX grains and their grain
size. Part 3 usually possessed a greater volume fraction of DRXed grains than Parts 1 and 2. This trend
remained dominant as the deformation rate increased from 30 mm/min to 50 mm/min.

Tensile twins play an important role in the effort to understand deformation behaviors during
deep drawing. The volume fractions of the tensile twin boundaries are summarized in Figure 16.
Twinned fractions of the bottom regions are negligible. Increased numbers of tensile twins are more
evident at a deformation rate of 50 mm/min when compared to the number at 30 mm/min. When
considering the same deformation rate, a low working temperature of of 225 ◦C is favored for twining
activation compared to a high temperature of of 350 ◦C. The Part 3 region possessed a greater number
of tensile twins than Parts 1 and 2 at a deformation rate of 30 mm/min. This implies that thickening in
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the flange is the main sources of tensile twins. At a deformation rate of 50 mm/min, strong activation
of tensile twins was observed in Part 1 with bending deformation. The volumes of tensile twins in Part
3 were smaller when compared to that in Part 1. This is associated with more activation of non-basal
slips in Part 3 rather than twinning due to elevated temperature.

Large grains are usually favorable for twinning activation, compared to small grains. Grain size
constraints on twin expansion in hexagonal close packed crystals was studied, and it was also found
that twinning stress increases with decreasing grain size [44]. There are some variations in twinning
volume fraction with cup position. During deep drawing of Mg-Al-Mn system at a drawing speed of
50 mm/min at 225 ◦C, it is evident that more twinning was observed in the IC sheets with large grains
than in the TRC sheets with small grains. Under a decreased drawing speed of 30 mm/min at 225 ◦C,
it is interesting to note that the Part 1 and Part 3 of the TRC sheets revealed more twinning activation,
as compared to those of the IC sheets. When considering that there is some difference in distribution
of AlMn dispersions between TRC and IC sheets, the refined dispersions seem to affect deformation
mode of twinning, depending on deformation rate. In our previous studies of Mg–Al–Mn–Mm and
Mg–Al–Mn–Ca systems [22,28], grains and AlMn particles of TRC sheets are smaller than those of IC
sheets and this resulted in better yield and tensile strengthes in the TRC sheets. It is also evident that
TRC sheets possess lower elongation than IC sheets, implying trade-off of strength and elongation.
This is also found in the Mg–Al–Mn system, as shown in Figure 3. In other magnesium alloys with
dispersion (Mg–Al–Zn–Ca systems), the addition of Ca increased volume fraction of dispersions and
refined overall grain size [45]. With an increase in Ca addition, the yield strength increased and
elongation decreased. Usually, dispersed particles prevented dislocation motion during deformation,
and prohibited grain boundary motion during annealing. Various precipitates or dispersions affect the
deformation modes of magnesium alloys [46]. A better understanding of the structure, morphology,
and orientation of precipitates or dispersions is important for optimization of mechanical properties.
Strength mechanism caused by interaction between twin growth and precipitates was also studied in
detail [47]. Such studies on the interactions between second phases and deformation modes, including
slips and twins, are not trivial. Detailed investigation on interactions of deformation modes with
dispersions is left as further studies.

Figure 14. Misorientation measures of GOS and SOS obtained from initial microstructure of
Mg-Al-Mn sheets.
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(a)

(b)

1Figure 15. Volume fractions of small and large grains and their average grain size with each position of
drawn cups, according to the deformation rates of (a) 30 mm/min, and (b) 50 mm/min.

Macroscopic microstructural evolution can be understood using misorientation distribution.
The typical normalized frequency of the misorientation distribution of IC sheets is shown in Figure 17.
Overall, there are three distinct peaks in the misorientation distribution at a deformation rate of
30mm/min. The first peak between 5◦ and 10◦ comes from the subdivision due to plastic deformation.
The second set of peaks around 30◦ is also found. Dominant double twin boundaries, < 101̄1 > − <

101̄2 > are known as 38◦ < 112̄0 > in magnesium alloys. Although minor double twin boundaries
of 30.1◦ < 112̄0 > are also reported [31], the nucleation of 30◦ < 0001 > grain boundaries seems
to be more reasonable [48], when considering initial state at the bottom position. In this study, the
frequencies of near 30◦ are twice greater than those of 38◦. The third peak is observed near 86◦,
and this is associated with the tensile twins of 86◦ < 112̄0 >. A high frequency for tensile twins
is mainly observed in Part 3, as discussed above. For a comparison, a random distribution is also
included. At a deformation rate of 50 mm/min, peaks near 86◦ are most dominant, in addition
to a high frequency at low angle misorientations, implying strong activation of tensile twins and
grain subdivision, respectively. Part 1 is the main location of tensile twins at a deformation rate of
50 mm/min. It is also important to note the decrease in the peaks near 30◦ at a deformation rate of
50 mm/min (Figure 17a), compared to those at a deformation rate of 30 mm/min (Figure 17b). At a
higher temperature of 350 ◦C, low angle frequency due to subdivision decreases. Overall, deformation
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rate is more critical to determine the misorientation distribution than temperature. At increased
deformation temperature, low angle frequency decreases due to recovery of deformed structures.
The trends of misorientation distributions of TRC sheets are similar to those of IC sheets, and they are
not shown here.

(a) (b)

1

Figure 16. Volume fractions of tensile twin boundaries at each position of drawn cups, according to
deformation rates of (a) 30 mm/min, and (b) 50 mm/min.

Figure 17. Frequency of misorientation distribution at various positions of drawn cups (IC sheets).
Deformation rates and temperatures: (a) 30 mm/min, and (b) 50 mm/min at 225 ◦C, and (c) 30 mm/min,
and (d) 50 mm/min at 350 ◦C
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5. Conclusions

The mechanical properties and textural and microstructural evolutions of wrought magnesium
alloys of Mg-Al-Mn during deep drawing were investigated in detail using EBSD and TEM.

• Twin-roll casted (TRC) sheets had much finer precipitates and smaller grains than ingot-casted
(IC) sheets. At room temperature, TRC sheets demonstrated greater strength and elongation than
IC sheets. At elevated temperatures of 225 ◦C, and 350 ◦C, the IC sheets revealed better elongation
than TRC sheets.

• During deep drawing, the bottom bent region, cup wall, and top flange experienced different
deformation history, and dominant deformation modes varied with position. Most of the thinning
of the drawn cups was observed near the bent, and most thickening near the top flange.

• The deformation rate is important to activate tensile twins both near the bent area and the flange.
Tensile twins are much more evident at a deformation rate of 50 mm/min than at 30 mm/min.
IC sheets possessed more tensile twins than TRC sheets.

• The working temperature dominantly affects deformation mechanisms and a refined grain
structure caused by DRX during deep drawing. In particular, at a temperature of 225 ◦C,
the refined DRXed grains in the flange is associated with twinning followed by DRX. At 350 ◦C,
the DRXed grains in the flange reflected greater activation of non-basal slips rather than twins.
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