Metallographic and Mechanical Research of the O–Ti2AlNb Alloy
Abstract
:1. Introduction
2. Material and Testing Procedures
2.1. Material and Specimen
- 30 mL C3H6O3 (Struers Companies, Cracov, Poland)
- 15 mL HNO3 (Struers Companies, Cracov, Poland)
- 5 mL HF (Struers Companies, Cracov, Poland)
2.2. Static and Fatigue Testing
3. Results and Discussion
3.1. Metallographic Analysis
3.2. Material after Static Testing
3.3. Development of Fatigue Cracks
4. Summary and Conclusions
- In the material, mainly trans-crystalline cracks were observed but there are also inter-crystalline cracks along the grain boundaries.
- The development of fatigue cracks in the tested alloy indicates the tendency for brittle fracture and ran along the grain boundary.
- The observed fractures were lamellar regardless of the methodology of the research.
Author Contributions
Funding
Conflicts of Interest
References
- Appel, F.; Paul, J.D.H.; Oehring, M. (Eds.) Gamma Titanium Aluminide Alloys: Science and Technology; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2011. [Google Scholar]
- Loria, A. Gamma titanium aluminides as prospective structural materials. Intermetallics 2000, 8, 1339–1345. [Google Scholar] [CrossRef]
- Szkliniarz, W. The alloys from the binary system of Ti-Al. In Metallic Materials with the Participation of Intermetallic Phases; Bojar, Z., Przetakiewicz, W., Eds.; Technical Military Academy: Warsaw, Poland, 2006; Chapter 2.2; pp. 66–88. (In Polish) [Google Scholar]
- Kumpfert, J.; Leyens, C. Titanium and Titanium Alloys, Fundamentals and Applications; Leyens, C., Peters, N., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Banerjee, D.; Gogia, A.K.; Nandy, T.K.; Joshi, V.A. A new ordered orthorhombic phase in a Ti3Al2Nb alloy. Acta Met. 1988, 36, 871–882. [Google Scholar] [CrossRef]
- Kumpfert, J. Intermetallic alloys based on orthorhombic titanium aluminide. Adv. Eng. Mater. 2001, 3, 851–864. [Google Scholar] [CrossRef]
- Mozer, B.; Bendersky, L.A.; Boettinger, W.J. Neutron powder diffraction study of the orthorhombic Ti2AlNb phase. Scripta Metallurgica et Materiala 1990, 24, 2363–2368. [Google Scholar] [CrossRef]
- Boehlert, C.J.; Majumdar, B.S.; Ajumdar, S.; Krishnamurthy, S.; Miracle, D.B. Role of matrix microstructure on room-temperature tensile properties and fiber-strength utilization of an orthorhombic Ti-Alloy-based composite. Met. Mater. Trans. A 1997, 28, 309–323. [Google Scholar] [CrossRef]
- Chan, K.S. Developing Hydrogen Tolerant Microstructures for an Alpha-2 Titanium Aluminide Alloy. Met. Mater. Trans. A 1992, 23, 497–507. [Google Scholar] [CrossRef]
- Wang, J.; Kong, L.; Li, T.; Xiong, T. Oxidation behavior of thermal barrier coatings with a TiAl3 bond coat on γ-TiAl Alloy. J. Therm. Spray Technol. 2015, 24, 467–475. [Google Scholar] [CrossRef]
- Kakare, S.A.; Toney, J.B.; Aswath, P.B. Oxidation of ductile particle reinforced Ti-48Al composite. Met. Mater. Trans. A 1995, 26, 1835–1845. [Google Scholar] [CrossRef]
- Takasaki, A.; Furuya, Y.; Taneda, Y. Hydrogen uptake in titanium aluminides covered with oxide layers. Met. Mater. A 1998, 29, 307–314. [Google Scholar] [CrossRef]
- Appel, F.; Dimiduk, D.; Kim, Y.W.; Lin, J.; Smarsly, W. Gamma Titanium Aluminide Alloys; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Fedirko, V.M.; Pichuhin, A.T.; Luk’yanenko, H.O.; Onuferko, V.S. Interstitial hardening of the surface of titanium alloys by vacuum heat treatment. Mat. Sci. 2005, 41, 208–216. [Google Scholar] [CrossRef]
- Shademan, S.; Soboyejo, A.B.O.; Knott, J.F.; Soboyejo, W.O. A physically-based model for the prediction of long fatigue crack growth in Ti–6Al–4V. Mat. Sci. Eng. A 2001, 315, 1–10. [Google Scholar] [CrossRef]
- Rozumek, D.; Hepner, M. Influence of microstructure on fatigue crack propagation under bending in the alloy Ti-6Al-4V after heat treatment. Materialwissenschaft Werkstofftechnik 2015, 46, 1088–1095. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.P.; Keshtegar, B.; Qian, G.; Wang. Q. Probabilistic framework for fatigue life assessment of notched components under size effects. Int. J. Mech. Sci. 2020, 181, 105685. [Google Scholar] [CrossRef]
- Sołtysiak, R.; Małecka, J. The analysis of cyclic properties of Ti-6Al-4V titanium alloy at room and liquid nitrogen temperature. Mat. Sci. Eng. A 2018, 734, 476–484. [Google Scholar] [CrossRef]
- Małecka, J. Effect of an Al2O3 coating on the oxidation process of a γ-TiAl phase based alloy. Corr. Sci. 2012, 63, 287–292. [Google Scholar] [CrossRef]
- Małecka, J. Investigation of the oxidation behavior of orthorhombic Ti2AlNb alloy. J. Mat. Eng. Perform. 2015, 24, 1834–1840. [Google Scholar] [CrossRef] [Green Version]
- Małecka, J.; Grzesik, W.; Hernas, A. An investigation on oxidation wear mechanisms of Ti–46Al–7Nb–0.7Cr–0.1Si–0.2Ni. Corr. Sci. 2010, 52, 263–272. [Google Scholar] [CrossRef]
- Rowe, R.G. High Temperature Aluminides & Intermetallics; TMS: Warrendale, PA, USA, 1990. [Google Scholar]
- Kumpfert, J.; Assler, H.; Miracle, D.B.; Spowart, J.E. Transverse Properties of Titanium Matrix Composites Transverse Properties of Titanium Matrix Composites. In Proceedings of the Materials Week 2000, Munich, Germany, 25–28 September 2000. [Google Scholar]
- Rozumek, D.; Marciniak, Z. Fatigue properties of notched specimens made of FEP04 steel. Mat. Sci. 2012, 47, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Bayoumi, M.R.; Abdellatif, A.K. Effect of surface finish on fatigue strength. Eng. Frac. Mech. 1995, 51, 861–870. [Google Scholar] [CrossRef]
- Singla, A.K.; Singh, J.; Sharma, V.; Gupta, M.; Song, Q.; Rozumek, D.; Królczyk, G.M. Impact of Cryogenic Treatment on HCF and FCP Performance of β-Solution Treated Ti-6Al-4V ELI. Biomaterial. Mater. 2020, 13, 500. [Google Scholar] [CrossRef] [Green Version]
- Rozumek, D.; Hepner, M. Influence of oxygenation time on crack growth in titanium alloy under cyclic bending. Mat. Sci. 2011, 47, 89–94. [Google Scholar] [CrossRef] [Green Version]
Material | % at | ||||
---|---|---|---|---|---|
Al | Nb | Mo | V | Ti | |
Ti2AlNb(O) | 25 | 12.5 | 6.01 | 0.48 | balance |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małecka, J.; Rozumek, D. Metallographic and Mechanical Research of the O–Ti2AlNb Alloy. Materials 2020, 13, 3006. https://doi.org/10.3390/ma13133006
Małecka J, Rozumek D. Metallographic and Mechanical Research of the O–Ti2AlNb Alloy. Materials. 2020; 13(13):3006. https://doi.org/10.3390/ma13133006
Chicago/Turabian StyleMałecka, Joanna, and Dariusz Rozumek. 2020. "Metallographic and Mechanical Research of the O–Ti2AlNb Alloy" Materials 13, no. 13: 3006. https://doi.org/10.3390/ma13133006
APA StyleMałecka, J., & Rozumek, D. (2020). Metallographic and Mechanical Research of the O–Ti2AlNb Alloy. Materials, 13(13), 3006. https://doi.org/10.3390/ma13133006