Flame-Retardant and Sound-Absorption Properties of Composites Based on Kapok Fiber
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Equipment
2.2. Preparation Technology of Composites
2.2.1. Preparation of Sound-Absorbing Composites
2.2.2. Preparation of Flame Retardant Treatment for Kapok Fiber
2.3. Testing of Composites
2.3.1. Testing of Sound-Absorption Properties
2.3.2. Testing of Flame-Retardant Properties
3. Results and Discussion
3.1. Sound-Absorption Properties
3.1.1. Influence of Hot Pressing Temperature on Sound-Absorption Properties
3.1.2. Influence of Hot Pressing Time on Sound-Absorption Properties
3.1.3. Influence of Density of Composites on Sound-Absorption Properties
3.1.4. Influence of Mass Fraction of Kapok Fiber on Sound-Absorption Properties
3.1.5. Influence of Thicknesses on Sound-Absorption Properties
3.1.6. Influence of Air Layer Thickness on Sound-Absorption Properties
3.1.7. Sound-Absorption Properties of Composites under Optimal Process Parameters
3.2. Flame Retardant Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muhammd, J. Noise pollution—An insidious health hazards. ISRA Med. J. 2015, 7, 189–190. [Google Scholar]
- Chu, J.Y.; Liao, S.Q.; Li, H.G. Performance and application progress of kapok fiber. Tech. Text. 2018, 36, 6–10. [Google Scholar]
- Rijavec, T. Influence of Kapok hollowness on its liquid retention capacity. Tekstilec 2009, 52, 270–282. [Google Scholar]
- Liu, X.T.; Li, L.; Yan, X.; Zhang, H.P. Sound-absorbing properties of Kapok fiber nonwoven composite at low-frequency. Adv. Mater. Res. 2013, 821–822, 329–332. [Google Scholar] [CrossRef]
- Xiang, H.F.; Wang, D.; Liua, H.C.; Zhao, N.; Xu, J. Investigation on sound absorption properties of kapok fibers. Chin. J. Polym. Sci. 2013, 31, 521–529. [Google Scholar] [CrossRef]
- Makki, A.I.; Oktariani, E. Acoustic absorptive properties of Kapok fiber, Kapok fiber layered tricot fabric and Kapok fiber layered double weave fabric. In Proceedings of the 1st International Conference on Engineering and Applied Science, Madiun, Indonesia, 21 August 2019. [Google Scholar]
- Liu, X.T.; Yan, X.; Zhang, H.P. Effects of pore structure on sound absorption of kapok-based fiber nonwoven fabrics at low frequency. Test. Res. J. 2016, 86, 755–764. [Google Scholar] [CrossRef]
- Chung, B.Y.; Hyeong, M.H.; An, B.C.; Lee, E.M.; Lee, S.S.; Kim, J.-H.; Kim, J.-S.; Kim, T.-H.; Cho, J.-Y. Flame-resistant kapok fiber manufactured using gamma ray. Radiat. Phys. Chem. 2009, 78, 513–515. [Google Scholar] [CrossRef]
- Wu, H.; Araby, S.; Xu, J.; Kuan, H.; Wang, C.-H.; Mouritz, A.; Zhuge, Y.; Lin, R.J.-T.; Zong, T.; Ma, J.; et al. Filling natural microtubules with triphenyl phosphate for flame-retarding polymer composites. Compos. Part A Appl. Sci. Manuf. 2018, 115, 247–254. [Google Scholar] [CrossRef]
- Kwon, O.D.; Seo, W.J.; Yang, D.S.; Chae, W.S. Flame Retardant Treating Agent for Kapok-Fiber or Kapok-Nonwoven Fibric. U.S. Patent 20180002548A1, 4 January 2018. [Google Scholar]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Cikova, E.; Micusik, M.; Siskova, A.; Prochazka, M.; Fedorko, P.; Omastova, M. Conducting electrospun polycaprolactone/polypyrrole fibers. Synth. Met. 2018, 235, 80–88. [Google Scholar] [CrossRef]
- Hosni, A.S.; Pittman, J.K.; Robson, G.D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Manag. 2019, 97, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, S.; Iqbal, T.; Bakhsheshirad, H.R.; Alsakkaf, A.; Kamil, A.; Abdlukadir, M.R.; Idris, M.H.; Raghav, H.B. Zinc-doped hydroxyapatite—Zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance. Trans. Nonferr. Metal. Soc. 2020, 30, 123–133. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Maio, A. Mechanical behavior of polylactic acid/polycaprolactone porous layered functional composites. Compos. Part B Eng. 2016, 98, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Parsons, A.J.; Felfel, R.M.; Rudd, C.D.; Irvine, D.J.; Ahmed, I. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties. J. Mech. Behav. Biomed. 2016, 59, 78–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, H.N.; Ismail, S.O.; Zhang, Z.; Barber, A.H.; Welsh, E.; Maigret, J.; Beaugrand, J. Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Compos. Part A Appl. Sci. 2018, 113, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lyu, L.; Guo, J.; Wang, Y. Sound absorption performance of the poplar seed Fiber/PCL composite materials. Materials 2020, 13, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.Y. Flame Retardant Applications And Mechanism Studise of Phosphorus-Containing Biomass Material in Polycaprolactone. Master’s Thesis, South China University of Technology, Guangzhou, China, September 2017. [Google Scholar]
- Alenezi, H.; Cam, M.E.; Edirisinghe, M. Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Appl. Phys. Rev. 2019, 6, 041401. [Google Scholar] [CrossRef]
- Tian, Y.; Lyu, L.; Wang, Y. Fabrication and properties of sound absorption composites based on kapok fibers. Shanghai Text. Sci. Technol. 2019, 47, 38–41. [Google Scholar]
- Danihelová, A.; Nemec, M.; Gergel, T.; Gejdoš, M.; Gordanová, J.; Scensný, P. Usage of recycled technical textiles as thermal insulation and an acoustic absorber. Sustainability 2019, 11, 2968. [Google Scholar] [CrossRef] [Green Version]
- Krucinska, I.; Gliscinska, E.; Michalak, M.; Ciechanska, D.; Kazimierczak, J.; Bloda, A. Sound-absorbing green composites based on cellulose ultrashort/ultra-fine fibers. Text. Res. J. 2014, 85, 646–657. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, Ľ. Sound-absorption coefficient of bark-based insulation panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef] [PubMed]
- Soltani, P.; Taban, E.; Faridan, M.; Samaei, S.E.; Amininasab, S. Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Appl. Acoust. 2020, 157, 10699. [Google Scholar] [CrossRef]
- Su, X.F.; Huang, C.J. Advance in the research of chemical components and pharmacological actions of gossampinus malabarica. J. Guangxi Norm. Univ. Natl. 2010, 27, 13–15. [Google Scholar]
- Yan, X.F. Study on the Natural Characteristics of Kapok Fiber and the Technology of Its Anti-Mite Functional Textiles. Master’s Thesis, Donghua University, Shanghai, China, January 2015. [Google Scholar]
- Chen, W. Study on Flame Retardant of PE-based Wood-Plastic. Master’s Thesis, Hefei University of Technology, Hefei, China, January 2017. [Google Scholar]
- Orhan, T.; Isitman, N.A.; Hacaloglu, J.; Kaynak, C. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly (methyl methacrylate). Polym. Degrad. Stabil. 2011, 96, 1780–1787. [Google Scholar] [CrossRef]
- Lan, S.J. Surface Modification Mechanism of Magnesium Hydroxide and Its Application in EVA. Ph.D. Thesis, University of Chinese Academy of Sciences, Qinghai, China, June 2017. [Google Scholar]
Samples | Magnesium Hydroxide (%) | Zinc Borate (%) | Ammonium Polyphosphate (%) | Antimony Trioxide (%) |
---|---|---|---|---|
1 | 20 | 0 | 0 | 0 |
2 | 25 | 0 | 0 | 0 |
3 | 30 | 0 | 0 | 0 |
4 | 35 | 0 | 0 | 0 |
5 | 40 | 0 | 0 | 0 |
6 | 45 | 0 | 0 | 0 |
7 | 50 | 0 | 0 | 0 |
8 | 30 | 5 | 0 | 0 |
9 | 30 | 0 | 5 | 0 |
10 | 30 | 0 | 0 | 5 |
Samples | Magnesium Hydroxide (%) | Zinc Borate (%) | Ammonium Polyphosphate (%) | Antimony Trioxide (%) | LOI (%) |
---|---|---|---|---|---|
1 | 20 | 0 | 0 | 0 | 26.0 |
2 | 25 | 0 | 0 | 0 | 26.5 |
3 | 30 | 0 | 0 | 0 | 27.0 |
4 | 35 | 0 | 0 | 0 | 27.5 |
5 | 40 | 0 | 0 | 0 | 28.5 |
6 | 45 | 0 | 0 | 0 | 28.5 |
7 | 50 | 0 | 0 | 0 | 29.5 |
8 | 30 | 5 | 0 | 0 | 30.0 |
9 | 30 | 0 | 5 | 0 | 28.0 |
10 | 30 | 0 | 0 | 5 | 31.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, L.; Tian, Y.; Lu, J.; Xiong, X.; Guo, J. Flame-Retardant and Sound-Absorption Properties of Composites Based on Kapok Fiber. Materials 2020, 13, 2845. https://doi.org/10.3390/ma13122845
Lyu L, Tian Y, Lu J, Xiong X, Guo J. Flame-Retardant and Sound-Absorption Properties of Composites Based on Kapok Fiber. Materials. 2020; 13(12):2845. https://doi.org/10.3390/ma13122845
Chicago/Turabian StyleLyu, Lihua, Yuanyuan Tian, Jing Lu, Xiaoqing Xiong, and Jing Guo. 2020. "Flame-Retardant and Sound-Absorption Properties of Composites Based on Kapok Fiber" Materials 13, no. 12: 2845. https://doi.org/10.3390/ma13122845
APA StyleLyu, L., Tian, Y., Lu, J., Xiong, X., & Guo, J. (2020). Flame-Retardant and Sound-Absorption Properties of Composites Based on Kapok Fiber. Materials, 13(12), 2845. https://doi.org/10.3390/ma13122845