Purification for Carbon Nanotubes Synthesized by Flame Fragments Deposition via Hydrogen Peroxide and Acetone
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Carbon Nanotubes Synthesis
2.3. Purification Processes
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S.; Ichihashi, T.J.N. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603. [Google Scholar] [CrossRef]
- Hines, R.; Hajilounezhad, T.; Love-Baker, C.; Koerner, G.; Maschmann, M.R. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis. ACS Appl. Mater. Interfaces 2020, 12, 17893–17900. [Google Scholar] [CrossRef] [PubMed]
- Jasim, A.M.; Hoff, S.E.; Xing, Y.J.E.A. Enhancing methanol electrooxidation activity using double oxide catalyst support of tin oxide clusters on doped titanium dioxides. Electrochim. Acta 2018, 261, 221–226. [Google Scholar] [CrossRef]
- Hajilounezhad, T.; Ajiboye, D.M.; Maschmann, M.R. Evaluating the Forces Generated During Carbon Nanotube Forest Growth and Self-Assembly. Materialia 2019, 7, 100371. [Google Scholar] [CrossRef]
- Ibrahim, K.S. Carbon nanotubes-properties and applications: A review. Carbon Lett. 2013, 14, 131–144. [Google Scholar] [CrossRef]
- Jasim, A.M. Enhancing Methanol Electro-Oxidation by Double Oxide Incorporation with Platinum on Carbon Nanotubes; University of Missouri: Columbia, MO, USA, 2016. [Google Scholar]
- Bekyarova, E.; Ni, Y.; Malarkey, E.B.; Montana, V.; McWilliams, J.L.; Haddon, R.C.; Parpura, V. Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol. 2005, 1, 3–17. [Google Scholar] [CrossRef]
- Alwindawi, H.; Ismail, S.; Nafaee, Z.; Salman, H.; Balakit, A.; Hussein, F. Comparison between Biological Activities of Commercial and Synthesized Carbon Nanotubes by Flame Fragments Deposition Technique. Baghdad Sci. J. 2019, 16, 878–885. [Google Scholar]
- Giubileo, F.; Di Bartolomeo, A.; Scarfato, A.; Iemmo, L.; Bobba, F.; Passacantando, M.; Santucci, S.; Cucolo, A. Local probing of the field emission stability of vertically aligned multi-walled carbon nanotubes. Carbon 2009, 47, 1074–1080. [Google Scholar] [CrossRef]
- Jasim, A.M.; He, X.; White, T.A.; Xing, Y. Nano-layer deposition of metal oxides via a condensed water film. Commun. Mater. 2020, 1, 9. [Google Scholar] [CrossRef]
- Hou, P.-X.; Liu, C.; Cheng, H.-M. Purification of carbon nanotubes. Carbon 2008, 46, 2003–2025. [Google Scholar] [CrossRef]
- Ismail, A.; Goh, P.S.; Tee, J.C.; Sanip, S.M.; Aziz, M. A review of purification techniques for carbon nanotubes. Nano 2008, 3, 127–143. [Google Scholar] [CrossRef]
- MacKenzie, K.; Dunens, O.; Harris, A.T. A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 2009, 66, 209–222. [Google Scholar] [CrossRef]
- Wang, F.; Matsuda, K.; Rahman, A.M.; Peng, X.; Kimura, T.; Komatsu, N. Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (SWNTs) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6, 5)-SWNTs. J. Am. Chem. Soc. 2010, 132, 10876–10881. [Google Scholar] [CrossRef] [PubMed]
- Salernitano, E.; Giorgi, L.; Makris, T.D.; Giorgi, R.; Lisi, N.; Contini, V.; Falconieri, M. Purification of MWCNTs grown on a nanosized unsupported Fe-based powder catalyst. Diam. Relat. Mater. 2007, 16, 1565–1570. [Google Scholar] [CrossRef]
- Tagmatarchis, N.; Zattoni, A.; Reschiglian, P.; Prato, M. Separation and purification of functionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation. Carbon 2005, 43, 1984–1989. [Google Scholar] [CrossRef]
- Yang, C.; Hu, X.; Wang, D.; Dai, C.; Zhang, L.; Jin, H.; Agathopoulos, S. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation. J. Power Sources 2006, 160, 187–193. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Liang, T.; Wang, X.; Wu, J.; Hu, X.; Liang, J. Oxidation of multiwalled carbon nanotubes by air: Benefits for electric double layer capacitors. Powder Technol. 2004, 142, 175–179. [Google Scholar] [CrossRef]
- Smith, M.R., Jr.; Hedges, S.W.; LaCount, R.; Kern, D.; Shah, N.; Huffman, G.P.; Bockrath, B. Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon 2003, 41, 1221–1230. [Google Scholar] [CrossRef]
- Martinez, M.; Callejas, M.; Benito, A.M.; Maser, W.K.; Cochet, M.; Andres, J.; Schreiber, J.; Chauvet, O.; Fierro, J. Microwave single walled carbon nanotubes purification. Chem. Commun. 2002, 1000–1001. [Google Scholar] [CrossRef]
- Gomez, V.; Irusta, S.; Lawal, O.B.; Adams, W.; Hauge, R.H.; Dunnill, C.W.; Barron, A.R. Enhanced purification of carbon nanotubes by microwave and chlorine cleaning procedures. Rsc Adv. 2016, 6, 11895–11902. [Google Scholar] [CrossRef]
- Chia, J.S.Y.; Tan, M.T.; Chin, J.K.; Khiew, P.S.; Lee, H. A parametric study on the synthesis of graphene using Piranha-like thermal exfoliation. IPCBEE 2012, 48, 143. [Google Scholar]
- Abdulrazzak, F.H.; Esmail, S.K.; Dawod, H.A.; Abbas, A.M.; Almaliki, M.K. X-ray Analysis for Purification Process of Synthesized Multi-Walled Carbon Nanotubes by Chemical Vapor Deposition. Int. J. Theor. Appl. Sci. 2016, 8, 37. [Google Scholar]
- Ko, F.-H.; Lee, C.-Y.; Ko, C.-J.; Chu, T.-C. Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon 2005, 43, 727–733. [Google Scholar] [CrossRef]
- Azodpour, J.; Baniadam, M. Microwave assisted purification of multi-walled carbon nanotubes by potassium permanganate; effect of acid to oxidant molar ratio and treatment time. Diam. Relat. Mater. 2019, 98, 107485. [Google Scholar] [CrossRef]
- Colomer, J.-F.; Piedigrosso, P.; Fonseca, A.; Nagy, J.B. Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth. Met. 1999, 103, 2482–2483. [Google Scholar] [CrossRef]
- Hernadi, K.; Siska, A.; Thien-Nga, L.; Forro, L.; Kiricsi, I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion. 2001, 141, 203–209. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, H.; Hou, Y.; McNicholas, T.P.; Yuan, D.; Yang, S.; Ding, L.; Feng, W.; Liu, J. Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano 2008, 2, 1634–1638. [Google Scholar] [CrossRef]
- Das, R.; Ali, M.E.; Hamid, S.B.A.; Annuar, M.; Ramakrishna, S. Common wet chemical agents for purifying multiwalled carbon nanotubes. J. Nanomater. 2014, 2014, 237. [Google Scholar] [CrossRef]
- Suzuki, T.; Suhama, K.; Zhao, X.; Inoue, S.; Nishikawa, N.; Ando, Y. Purification of single-wall carbon nanotubes produced by arc plasma jet method. Diam. Relat. Mater. 2007, 16, 1116–1120. [Google Scholar] [CrossRef]
- Hammadi, A.H.; Abdulrazzak, F.H.; Atiyah, A.J.; Hussein, F.H. Synthesis of Carbon Nano tubes by Flame Fragments Deposition of Liquefied Petroleum Gas. Org. Med. Chem. IJ 2017, 29, 2804–2808. [Google Scholar] [CrossRef]
- Toader, M.; Fiedler, H.; Hermann, S.; Schulz, S.E.; Gessner, T.; Hietschold, M. Conductive AFM for CNT characterization. Nanoscale Res. Lett. 2013, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dikio, E.D.; Shooto, N.D.; Thema, F.T.; Farah, A.M. Raman and TGA study of carbon nanotubes synthesized over Mo/Fe catalyst on aluminium oxide, calcium carbonate and magnesium oxide support. Chem. Sci. Trans. 2013, 2, 1160–1173. [Google Scholar]
- Ebbesen, T.; Ajayan, P.; Hiura, H.; Tanigaki, K. Purification of nanotubes. Nature 1994, 367, 519. [Google Scholar] [CrossRef]
- Rebhi, A.; Makhlouf, T.; Njah, N. X-Ray diffraction analysis of 99.1% recycled aluminium subjected to equal channel angular extrusion. Phys. Procedia 2009, 2, 1263–1270. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammadi, A.H.; Jasim, A.M.; Abdulrazzak, F.H.; Al-Sammarraie, A.M.A.; Cherifi, Y.; Boukherroub, R.; Hussein, F.H. Purification for Carbon Nanotubes Synthesized by Flame Fragments Deposition via Hydrogen Peroxide and Acetone. Materials 2020, 13, 2342. https://doi.org/10.3390/ma13102342
Hammadi AH, Jasim AM, Abdulrazzak FH, Al-Sammarraie AMA, Cherifi Y, Boukherroub R, Hussein FH. Purification for Carbon Nanotubes Synthesized by Flame Fragments Deposition via Hydrogen Peroxide and Acetone. Materials. 2020; 13(10):2342. https://doi.org/10.3390/ma13102342
Chicago/Turabian StyleHammadi, Asmaa H., Ahmed M. Jasim, Firas H. Abdulrazzak, Abdulkareem M. A. Al-Sammarraie, Yacine Cherifi, Rabah Boukherroub, and Falah H. Hussein. 2020. "Purification for Carbon Nanotubes Synthesized by Flame Fragments Deposition via Hydrogen Peroxide and Acetone" Materials 13, no. 10: 2342. https://doi.org/10.3390/ma13102342
APA StyleHammadi, A. H., Jasim, A. M., Abdulrazzak, F. H., Al-Sammarraie, A. M. A., Cherifi, Y., Boukherroub, R., & Hussein, F. H. (2020). Purification for Carbon Nanotubes Synthesized by Flame Fragments Deposition via Hydrogen Peroxide and Acetone. Materials, 13(10), 2342. https://doi.org/10.3390/ma13102342