Manufacturing ZrB2–SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model
Abstract
:1. Introduction
2. Experimental Setup
2.1. The Manufacturing Process of ZrB2–SiC–TaC
2.2. Analysis and Characterization
3. Potential Applications and Computational Model
4. Results
4.1. Characterization of ZrB2–SiC–TaC
4.2. Computational Results
4.2.1. Method Validity
4.2.2. The Natural Frequency of the Wing
5. Discussions
5.1. Experiments
5.2. Finite Element Method
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fahrenholtz, W.G.; Hilmas, G.E.; Chamberlain, A.L.; Zimmermann, J.W. Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J. Mater. Sci. 2004, 39, 5951–5957. [Google Scholar] [CrossRef]
- Dai, F.; Zhou, Y. Reducing the ideal shear strengths of ZrB2 by high efficient alloying elements (Ag, Au, Pd and Pt). Sci. Rep. 2017, 7, 43416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahedi Asl, M.; Nayebi, B.; Ahmadi, Z.; Parvizi, S.; Shokouhimehr, M. A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering. Mater. Sci. Eng. A 2018, 731, 131–139. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Liu, Y.; Guo, Y.; Zhang, M.; Zhang, L.; Jian, X.; Yin, L.; Xie, J.; Deng., L. Oxidation behaviour of plasma-sprayed ZrB2-SiC coatings. Ceram. Int. 2019, 45, 2385–2392. [Google Scholar] [CrossRef]
- Zoli, L.; Vinci, A.; Galizia, P.; Melandri, C.; Sciti, D. On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments. Sci. Rep. 2018, 8, 9148. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, A.; Coletti, C.; Saddow, S.E. Carbon based materials on SiC for advanced biomedical applications. In Silicon Carbide Biotechnology; Elsevier: Waltham, MA, USA, 2012; Volume 12, pp. 431–458. [Google Scholar] [CrossRef]
- Guo, S.Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc. 2009, 29, 995–1011. [Google Scholar] [CrossRef]
- Wuchina, E.; Opila, E.; Opeka, M.; Fahrenholtz, W.; Talmy, I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 2007, 16, 30. [Google Scholar]
- Cedillos-Barraza, O.; Manara, D.; Boboridis, K.; Watkins, T.; Grasso, S.; Jayaseelan, D.D.; Konings, R.J.; Reece, M.J.; Lee, W.E. Investigating the highest melting temperature materials. A laser melting study of the TaC-HfC system. Sci. Rep. 2016, 6, 37962. [Google Scholar] [CrossRef] [Green Version]
- Silvestroni, L.; Kleebe, H.; Fahrenholtz, W.; Watts, J. Super-strong materials for temperatures exceeding 2000 °C. Sci. Rep. 2017, 7, 40730. [Google Scholar] [CrossRef]
- Zhang, G.J.; Guo, W.M.; Ni, D.W.; Kan, Y.M. Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties. J. Phys. Conf. Ser. 2009, 176, 012041. [Google Scholar] [CrossRef]
- Nisbet, H.; Migdisov, A.A.; Williams-Jones, A.E.; Xu, H.; van Hinsberg, V.J.; Roback, R. Challenging the thorium-immobility paradigm. Sci. Rep. 2019, 9, 17035. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zheng, J.W.; Xiao, H.Y.; Liu, Z.J.; Zu, X.T. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC. Sci. Rep. 2017, 7, 9344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.J.; Ross, M.A.; Leon, N.D.; Weinberger, C.R.; Thompson, G.B. Ultra-high temperature deformation in TaC and HfC. J. Eur. Ceram. 2018, 38, 5319–5332. [Google Scholar] [CrossRef]
- Lawson, J.W.; Murray, S.D.; Charles, W. Bauschlicher. Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations. J. Appl. Phys. 2011, 110, 083507. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.B.; Man, Z.Y.; Liu, J.X.; Xu, F.F.; Zhang, G.J. Microstructures, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5 vol.% WC. Mater. Des. 2015, 81, 133–140. [Google Scholar] [CrossRef]
- Guo, W.M.; Zhang, G.J. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J. Am. Ceram. Soc. 2009, 92, 264–267. [Google Scholar] [CrossRef]
- Hu, P.; Wang, Z. Flexural strength and fracture behavior of ZrB2–SiC ultra-high temperature ceramic composites at 1800 °C. J. Eur. Ceram. Soc. 2010, 30, 1021–1026. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, J.C.; Zeman, P.; Šímová, V.; Vlček, J.; Meletis, E.I. Microstructure evolution in amorphous Hf-B-Si-C-N high temperature resistant coatings after annealing to 1500 °C in air. Sci. Rep. 2019, 9, 3603. [Google Scholar] [CrossRef] [Green Version]
- Šímová, V.; Vlček, J.; Zuzjaková, Š.; Houška, J.; Shen, Y.; Jiang, J.; Meletis, E.I.; Peřina, V. Magnetron sputtered Hf–B–Si–C–N films with controlled electrical conductivity and optical transparency, and with ultrahigh oxidation resistance. Thin Solid Film. 2018, 653, 333–340. [Google Scholar] [CrossRef]
- Gild, J.; Zhang, Y.; Harrington, T.; Jiang, S.; Hu, T.; Quinn, M.C.; Mellor, W.M.; Zhou, N.; Vecchio, K.; Luo, J. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946. [Google Scholar] [CrossRef]
- Wu, P.; Lv, H.; Peng, T.; He, D.; Mu, S. Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Sci. Rep. 2015, 4, 3968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapata-Solvas, E.; Jayaseelan, D.D.; Lin, H.T.; Brown, P.; Lee, W.E. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. J. Eur. Ceram. 2013, 33, 1373–1386. [Google Scholar] [CrossRef]
- Tan, W.; Petorak, C.A.; Trice, R.W. Rare-earth modified zirconium diboride high emissivity coatings for hypersonic applications. J. Eur. Ceram. Soc. 2014, 34, 1–11. [Google Scholar] [CrossRef]
- Neuman, E.W.; Hilmas, G.E.; Fahrenholtz, W.G. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J. Eur. Ceram. Soc. 2013, 33, 2889–2899. [Google Scholar] [CrossRef]
- Neuman, E.W.; Hilmas, G.E.; Fahrenholtz, W.G. Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C. J. Eur. Ceram. Soc. 2015, 35, 463–476. [Google Scholar] [CrossRef]
- D’Angio, A.; Zou, J.; Binner, J.; Ma, H.B.; Hilmas, G.E.; Fahrenholtz, W.G. Mechanical properties and grain orientation evolution of zirconium diboride-zirconium carbide ceramics. J. Eur. Ceram. Soc. 2018, 38, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Silvestroni, L.; Mungiguerra, S.; Sciti, D.; Martino, G.D.D.; Savino, R. Effect of hypersonic flow chemical composition on the oxidation behavior of a super-strong UHTC. Corros. Sci. 2019, 159, 108125. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Nayebi, B.; Ahmadi, Z.; Jaberi Zamharir, M.; Shokouhimehr, M. Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceram. Int. 2018, 44, 7334–7348. [Google Scholar] [CrossRef]
- An, Y.; Han, W.; Han, J.; Zhao, G.; Zhou, S.; Zhang, X. Synergistic effect on the mechanical behaviors of ternary graphene oxide-zirconium diboride-poly(vinyl alcohol) papers. Mater. Des. 2016, 112, 275–281. [Google Scholar] [CrossRef]
- Sonber, J.K.; Raju, K.; Murthy, T.C.R.C.; Sairam, K.; Nagaraj, A.; Majumdar, S.; Kain, V. Friction and wear properties of zirconium diboride in sliding against WC ball. Int. J. Refract. Met. Hard Mater. 2018, 76, 41–48. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Nayebi, B.; Shokouhimehr, M. TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite. Ceram. Int. 2018, 44, 15269–15273. [Google Scholar] [CrossRef]
- Nayebi, B.; Ahmadi, Z.; Shahedi Asl, M.; Parvizi, S.; Shokouhimehr, M. Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites. J. Alloys Compd. 2019, 805, 725–732. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, P.K.; Ghosh, D. Spark plasma sintering and structural properties of Zrb2 based ceramics: A review. Rev. Adv. Mater. Sci. 2016, 44, 182–193. [Google Scholar]
- Zhang, X.; An, Y.; Han, J.; Han, W.; Zhao, G.; Jin, X. Graphene nanosheet reinforced ZrB2–SiC ceramic composite by thermal reduction of graphene oxide. RSC Adv. 2016, 5, 47060–47065. [Google Scholar] [CrossRef]
- Thimmappa, S.K.; Golla, B.R.; Prasad, V.V.B.; Majumdar, B.; Basu, B. Phase stability, hardness and oxidation behavior of spark plasma sintered ZrB2-SiC-Si3N4 composites. Ceram. Int. 2019, 45, 9061–9073. [Google Scholar] [CrossRef]
- Sha, J.J.; Li, J.; Lv, Z.Z.; Wang, S.H.; Zhang, Z.F.; Zu, Y.F.; Flauder, S.; Krenkel, W. ZrB2-based composites toughened by as-received and heat-treated short carbon fibers. J. Eur. Ceram. Soc. 2017, 37, 549–558. [Google Scholar] [CrossRef]
- Ghassemi Kakroudi, M.; Dehghanzadeh Alvari, M.; Shahedi Asl, M.; Pourmohammadie Vafa, N.; Rabizadeh, T. Hot pressing and oxidation behavior of ZrB2–SiC–TaC composites. Ceram. Int. 2020, 46, 3725–3730. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Pakseresht, A.H.; Shahedi Asl, M.; Esmaeilkhanian, A.; Nargesi Khoramabadi, H.; Jang, H.W.; Shokouhimehr, M. Hydroxyapatite consolidated by zirconia: Applications for dental implant. J. Compos. Compd. 2020, 2, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Rafiaei, S.M.; Bahrami, A.; Shokouhimehr, M. Influence of Ni/Co binders and Mo2C on the microstructure evolution and mechanical properties of (Ti0.93W0.07)C-based Cermets. Ceram. Int. 2018, 44, 17655–17659. [Google Scholar] [CrossRef]
- Maleki, M.; Beitollahi, A.; Shokouhimehr, M. Template-free synthesis of porous boron nitride using a single source precursor. RSC Adv. 2015, 5, 6528–6535. [Google Scholar] [CrossRef] [Green Version]
- Vajdi, M.; Sadegh Moghanlou, F.; Sharifianjazi, F.; Shahedi Asl, M.; Shokouhimehr, M. A review on the COMSOL Multiphysics studies of heat transfer in advanced ceramics. J. Compos. Compd. 2020, 2, 35–44. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Nayebi, B.; Parvizi, S.; Shahedi Asl, M.; Shokouhimehr, M. Phase transformation in spark plasma sintered ZrB2–V–C composites at different temperatures. Ceram. Int. 2020, 46, 9415–9420. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Mahmoudi Gom-Yek, S.; Nasrollahzadeh, M.; Kim, A.; Varma, R.S. Palladium nanocatalysts on hydroxyapatite: Green oxidation of alcohols and reduction of nitroarenes in water. Appl. Sci. 2019, 9, 4183. [Google Scholar] [CrossRef] [Green Version]
- Vajdi, M.; Sadegh Moghanlou, F.; Ranjbarpour Niari, E.; Shahedi Asl, M.; Shokouhimehr, M. Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach. Ceram. Int. 2020, 46, 1730–1735. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Nayebi, B.; Ghassemi Kakroudi, M.; Shokouhimehr, M. Investigation of hot pressed ZrB2–SiC–carbon black composite by scanning and transmission electron microscopy. Ceram. Int. 2019, 45, 16759–16764. [Google Scholar] [CrossRef]
- Ramezanalizadeh, H.; Emamy, M.; Shokouhimehr, M. Wear behavior of Al/CMA-type Al3Mg2 Nanocomposites fabricated by mechanical milling and hot extrusion. Tribol. Trans. 2016, 59, 219–228. [Google Scholar] [CrossRef]
- Nayebi, B.; Shahedi Asl, M.; Ghassemi Karoudi, M.; Shokouhimehr, M. Temperature dependence of microstructure evolution during hot pressing of ZrB2–30 vol% SiC composites. Ceram. Int. 2016, 54, 7–13. [Google Scholar] [CrossRef]
- Nayebi, B.; Shahedi Asl, M.; Ghassemi Kakroudi, M.; Farahbakhsh, I.; Shokouhimehr, M. Interfacial phenomena and formation of nano-particles in porous ZrB2–40 vol% B4C UHTC. Ceram. Int. 2016, 42, 17009–17015. [Google Scholar] [CrossRef]
- Das, S.K.; Roy, S. Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 402, 012077. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Choi, E.; Kim, D. Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces. Struct. Eng. Mech. 2019, 70, 601–621. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Noh, H.C. Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads. Compos. Struct. 2017, 174, 142–157. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Noh, H.C. Numerical analysis of dynamic responses of the plate subjected to impulsive loads. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2015, 9, 1148–1151. [Google Scholar]
- Mohammadzadeh, B.; Noh, H.C. An analytical and numerical investigations on the dynamic responses of steel plates considering the blast loads. Int. J. Steel Struct. 2018, 19, 603–617. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Noh, H.C. Investigation into central-difference and Newmark’s beta method in measuring dynamic responses. Adv. Mater. Res. 2014, 831, 95–99. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Bina, M.; Hasounizadeh, H. Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces. Appl. Mech. Mater. 2012, 147, 283–287. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Noh, H.C. Investigation into buckling coefficients of plates with holes considering variation of hole size and plate thickness. Mechanika 2016, 22, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Mohammadzadeh, B.; Noh, H.C. Use of buckling coefficient in predicting buckling load of plates with and without holes. J. Korean Soc. Adv. Compos. Struct. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Choi, E.; Kim, W.J. Comprehensive investigation of buckling behavior of plates considering effects of holes. Struct. Eng. Mech. 2018, 68, 261–275. [Google Scholar] [CrossRef]
- Whally, R.; Ebrahimi, M. Vibration and control of aircraft wings. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 1998, 212, 353–365. [Google Scholar] [CrossRef]
Mechanical Property | Material | Value |
---|---|---|
Elastic modulus (GPa) | ZrB2–SiC–TaC | 403.5 |
Aluminum 2024-T3 | 73.1 | |
Poisson’s ratio | ZrB2–SiC–TaC | 0.29 |
Aluminum 2024-T3 | 0.33 | |
Density (kg/m3) | ZrB2–SiC–TaC | 3000 |
Aluminum 2024-T3 | 2780 |
Mechanical Property | Phase | Min | Max | Mean |
---|---|---|---|---|
Rigidity (GPa) | ZrB2–SiC–TaC Interface | 16218 | 26125 | 23356 |
Elastic modulus (GPa) | ZrB2–SiC–TaC Interface | 359.4 | 460.1 | 403.5 |
Thermal resistance (°C) | ZrB2–SiC–TaC Interface | 3000 | 3200 | 3100 |
Entry | Total Deformation (mm) | Equivalent Stress (MPa) | Equivalent Strain |
---|---|---|---|
Reference [50] | 6.7377 | 16.034 | 0.00023 |
Current | 6.8893 | 16.488 | 0.00075 |
Variation% | 2.25 | 2.75 | 2.26 |
Material | Mode I (Cycle/Time) | Mode II (Cycle/Time) | Mode III (Cycle/Time) |
---|---|---|---|
ZrB2–SiC–Tac | 2.67 × 10−3 | 1.13 × 10−2 | 1.14 × 10−2 |
Al | 2.56 × 10−3 | 9.91 × 10−3 | 1.08 × 10−2 |
ZrB2–SiC–Tac + Al | 5.79 × 10−3 | 2.24 × 10−2 | 2.44 × 10−2 |
Variation% (Al/Zr) | 4.12 | 12.30 | 5.26 |
Variation% (Al/Zr–Al) | 55.79 | 55.76 | 55.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadzadeh, B.; Jung, S.; Lee, T.H.; Le, Q.V.; Cha, J.H.; Jang, H.W.; Lee, S.-H.; Kang, J.; Shokouhimehr, M. Manufacturing ZrB2–SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model. Materials 2020, 13, 2213. https://doi.org/10.3390/ma13102213
Mohammadzadeh B, Jung S, Lee TH, Le QV, Cha JH, Jang HW, Lee S-H, Kang J, Shokouhimehr M. Manufacturing ZrB2–SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model. Materials. 2020; 13(10):2213. https://doi.org/10.3390/ma13102213
Chicago/Turabian StyleMohammadzadeh, Behzad, Sunghoon Jung, Tae Hyung Lee, Quyet Van Le, Joo Hwan Cha, Ho Won Jang, Sea-Hoon Lee, Junsuk Kang, and Mohammadreza Shokouhimehr. 2020. "Manufacturing ZrB2–SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model" Materials 13, no. 10: 2213. https://doi.org/10.3390/ma13102213
APA StyleMohammadzadeh, B., Jung, S., Lee, T. H., Le, Q. V., Cha, J. H., Jang, H. W., Lee, S.-H., Kang, J., & Shokouhimehr, M. (2020). Manufacturing ZrB2–SiC–TaC Composite: Potential Application for Aircraft Wing Assessed by Frequency Analysis through Finite Element Model. Materials, 13(10), 2213. https://doi.org/10.3390/ma13102213