Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fibers by Wet Spinning
2.3. Characterization of Fibrous Materials
2.4. Functionalization of PHB Fibers by Natural Plant Extracts
3. Results
3.1. Wet Spinning
3.2. Characterization of Fibrous Material
3.3. Functionalization of Fibrous Material by Natural Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdul Khalil, H.P.S.; Banerjee, A.; Saurabh, C.K.; Tye, Y.Y.; Suriani, A.B.; Mohamed, A.; Karim, A.A.; Rizal, S.; Paridah, M.T. Biodegradable Films for Fruits and Vegetable Packaging Application: Preparation and Properties. Food Eng. Rev. 2018, 10, 139–153. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure, and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434. [Google Scholar] [CrossRef] [PubMed]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Verlinden, R.A.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Piotrowska-Seget, Z.; Radecka, I.K. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 2011, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Mandolesi de Araújo, C.D.; de Andrade, C.C.; de Souza e Silva, E.; Dupas, F.A. Biodiesel production from used cooking oil: A review. Renew. Sustain. Energy Rev. 2013, 27, 445–452. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Godbole, S. Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresour. Technol. 2003, 86, 33–37. [Google Scholar] [CrossRef]
- Singh, S.; Mohanty, A. Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Compos. Sci. Technol. 2007, 67, 1753–1763. [Google Scholar] [CrossRef]
- Misra, S.K.; Valappil, S.P.; Roy, I.; Boccaccini, A.R. Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules 2006, 7, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, D.M.; Sanders, J.K.M. Amorphous, biomimetic granules of polyhydroxybutyrate: Preparation, characterization, and biological implications. J. Am. Chem. Soc. 1994, 116, 2695–2702. [Google Scholar] [CrossRef]
- Ito, Y.; Hasuda, H.; Kamitakahara, M.; Ohtsuki, C.; Tanihara, M.; Kang, I.-K.; Kwon, O.H. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J. Biosci. Bioeng. 2005, 100, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Yamane, H.; Terao, K.; Hiki, S.; Kimura, Y. Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer 2001, 42, 3241–3248. [Google Scholar] [CrossRef]
- Nicosia, A.; Gieparda, W.; Foksowicz-Flaczyk, J.; Walentowska, J.; Wesołek, D.; Vazquez, B.; Prodi, F.; Belosi, F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 2015, 154, 154–160. [Google Scholar] [CrossRef]
- Kuusipalo, J. PHB/V in Extrusion Coating of Paper and Paperboard: Part I: Study of Functional Properties. J. Polym. Environ. 2000, 8, 39–47. [Google Scholar] [CrossRef]
- Da Silva-Valenzuela, M.G.; Wang, S.H.; Wiebeck, H.; Valenzuela-Díaz, F.R. Nanocomposite Microcapsules from Powders of Polyhydroxybutyrate (PHB) and Smectite Clays. Mater. Sci. Forum 2010, 660–661, 794–798. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Chen, G.-Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009, 37, 1–12. [Google Scholar] [CrossRef]
- Rivera-Briso, A.; Serrano-Aroca, Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 2018, 10, 732. [Google Scholar] [CrossRef] [Green Version]
- Gogolewski, S.; Jovanovic, M.; Perren, S.M.; Dillon, J.G.; Hughes, M.K. The effect of melt-processing on the degradation of selected polyhydroxyacids: Polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym. Degrad. Stab. 1993, 40, 313–322. [Google Scholar] [CrossRef]
- Chiono, V.; Ciardelli, G.; Vozzi, G.; Sotgiu, M.G.; Vinci, B.; Domenici, C.; Giusti, P. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) blends for tissue engineering applications in the form of hollow fibers. J. Biomed. Mater. Res. Part A 2008, 85, 938–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D. Advances in Filament Yarn Spinning of Textiles and Polymers; Association with the Textile Institute; Woodhead Publishing Ltd.: Amsterdam, The Netherlands, 2014; 210p. [Google Scholar]
- Qin, Y. An Overview of Medical Textile Products. Medical Textile Materials; Elsevier: Amsterdam, The Netherlands, 2016; Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780081006184000029 (accessed on 21 July 2019).
- Mota, C.; Wang, S.; Puppi, D.; Gazzari, M.; Migone, C.; Chiellini, F.; Chen, G.Q.; Chiellini, E. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J. Tissue Eng. Regen. Med. 2017, 11, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Kundrat, V.; Cernekova, N.; Kovalcik, A.; Enev, V.; Marova, I. Drug Release Kinetics of Electrospun PHB Meshes. Materials 2019, 12, 1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheirsilp, B.; Louhasakul, Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour. Technol. 2013, 142, 329–337. [Google Scholar] [CrossRef]
- Ramon-Goncalves, M.; Gomez-Mejia, E.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Madrid, Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019, 96, 15–24. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Matouskova, P.; Marova, I.; Bokrova, J.; Benesova, P. Effect of Encapsulation of Antimicrobial Activity of Herbal Extracts with Lysozyme. Food Technol. Biotechnol. 2016, 54, 304–316. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons: New York, NY, USA, 2000; pp. 10815–10837. [Google Scholar]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.; Khatib, A.; Abdull Razis, A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Jiang, Q.; Sun, Z.; Li, G.; Ren, X.; Liang, J.; Huang, T. Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB). Fibers Polym. 2015, 16, 1751–1758. [Google Scholar] [CrossRef]
- Yilmaz, F.; Celep, G.; Tetik, G. Nanofibers in Cosmetics. In Nanofiber Research; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
Conc. (wt.%) | 1 | 3 | 5 | 7.5 | 10 |
---|---|---|---|---|---|
Feed (ml.h−1) | |||||
0.5 | N.A. | 23 | 55 | N.A. | N.A. |
1 | 0* | 17 | 36 | 16 | N.A. |
2 | 18 | 15 | 15 | N.A. | |
3 | 43 | 20 | 21 | 29 | |
5 | 17 | 23 | 13 | ||
8 | 16 | 28 | 34 | ||
10 | 11 | 17 | |||
15 | 25 |
Conc. (wt.%) | 1 | 3 | 5 | 7.5 | 10 |
---|---|---|---|---|---|
Feed (ml.h−1) | |||||
0.5 | N.A. | 41 ± 18 | 40 ± 6 | N.A. | N.A. |
1 | 19 ± 2 | 40 ± 7 | 46 ± 10 | 29 ± 15 | N.A. |
2 | 53 ± 6 | 51 ± 7 | 56 ± 9 | N.A. | |
3 | 58 ± 11 | 63 ± 11 | 66 ± 11 | 136 ± 12 | |
5 | 74 ± 3 | 69 ± 12 | 86 ± 10 | ||
8 | 75 ± 22 | 119 ± 22 | 72 ± 15 | ||
10 | 72 ± 10 | ||||
15 | 83 ± 10 |
Sample/Measurement | 3 wt.%; 3 ml.h−1 | 5 wt.%; 0.5 ml.h−1 | 7.5 wt.%; 8 ml.h−1 | 10 wt.%; 8 ml.h−1 |
---|---|---|---|---|
Surface area BET0 [m2.g−1] | 43 | 55 | 28 | 34 |
Surface area BET1 [m2.g−1] | 16.1 | 25.1 | 15.2 | 8.5 |
Surface area BET2 [m2.g−1] | 18.5 | 28 | 14.7 | 11.5 |
Surface area BJH2 [m2.g−1] | 25.8 | 38.4 | 21.3 | 22.9 |
Surface area DFT2 [m2.g−1] | 12 | 18.3 | 10 | 7.6 |
Pore diameter BJH2 [nm] | 1.4 | 1.4 | 1.4 | 1.4 |
Pore diameter DFT2 [nm] | 5.6 | 6.3 | 6.5 | 8.2 |
Extract | Phenolics mg/g of Plant Material | ABTS* mg of Trolox/g of Plant Material | Absorption Efficiency % ABTS /100 mg of Fibers | ||
---|---|---|---|---|---|
Water | Oil | Water | Oil | Oil | |
Cinnamon | 7.5 ± 0.8 | 43.8 ± 1.3 | 34.2 ± 1.3 | 13.3 ± 0.8 | 41.5 ± 2.3 |
Cloves | 11.6 ± 0.8 | 65.2 ± 2.2 | 14.1 ± 1.2 | 6.9 ± 0.6 | 95.1 ± 5.2 |
Oregano | 37.5 ± 1.7 | 32.5 ± 1.2 | 37.5 ± 1.8 | 14.8 ± 1.1 | 35.8 ± 1.9 |
Oak bark | 34.1 ± 1.3 | 11.6 ± 0.7 | 32.2 ± 0.8 | 15.3 ± 1.1 | 32.5 ± 0.9 |
Extract | Water (% of Phenolic Release) | Microemulsion (Phenolic Release %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 20 | 30 | 60 | 5 | 10 | 20 | 30 | 60 | |
Cinnamon | 47.2 | 62.4 | 83.5 | 86.1 | 91.5 | 29.3 | 41 | 61.9 | 68.4 | 82.6 |
Cloves | 34.6 | 62.9 | 67.1 | 71.6 | 86.8 | 28.3 | 54.2 | 52.7 | 61.2 | 71.4 |
Oregano | 21 | 22.7 | 27.5 | 30.4 | 34.5 | - | 5.1 | 9.6 | 24.7 | 28.8 |
Oak bark | 7.4 | 11.5 | 15.7 | 15.8 | 25.8 | 9.8 | 16.8 | 30 | 40.7 | 61 |
Extract | C. glabrata (% of Cell Count Decrease = % of Antimicrobial Effect) | M. luteus (% of Cell Count Decrease = % of Antimicrobial Effect) | S. marcescens (% of Cell Count Decrease = % of Antimicrobial Effect) | |||
---|---|---|---|---|---|---|
Water | Oil | Water | Oil | Water | Oil | |
Cinnamon | 16 ± 0.8 | 50.2 ± 3.3 | 8 ± 0.6 | 73.2 ± 4.6 | 37.1 ± 1.5 | 53.5 ± 4.3 |
Cloves | 21.5 ± 1.8 | 58.5 ± 3.1 | 47.5 ± 3.1 | 56.6 ± 3.1 | 42.9 ± 2.2 | 62.9 ± 5.6 |
Oregano | 30.8 ± 2.5 | 4.3 ± 0.8 | 42.2 ± 3 | 39.1 ± 1.8 | – | 32 ± 2.3 |
Oak bark | 35.4 ± 2.8 | 25.2 ± 1.6 | 8 ± 0.5 | 13 ± 0.9 | 17.1±1.4 | 43.7 ± 2.2 |
none | 1.2 ± 0.1 | 3 ± 0.2 | 2.4 ± 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kundrat, V.; Matouskova, P.; Marova, I. Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials 2020, 13, 86. https://doi.org/10.3390/ma13010086
Kundrat V, Matouskova P, Marova I. Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials. 2020; 13(1):86. https://doi.org/10.3390/ma13010086
Chicago/Turabian StyleKundrat, Vojtech, Petra Matouskova, and Ivana Marova. 2020. "Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application" Materials 13, no. 1: 86. https://doi.org/10.3390/ma13010086
APA StyleKundrat, V., Matouskova, P., & Marova, I. (2020). Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials, 13(1), 86. https://doi.org/10.3390/ma13010086