Effect of Al–Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel
Abstract
:1. Introduction
2. Corrosion Fatigue Test
3. Results and Discussion
3.1. Coating on Corrosion Fatigue Life
3.2. Mechanism of Coating Improving Corrosion Fatigue Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bai, Y.; Bai, Q. Subsea Pipelines and Risers; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Feng, G.; Thodla, R.; Evans, K.; Joia, C.; Baptista, I.P. Corrosion fatigue performance of duplex 2507 for riser applications. In Proceedings of the ASME International Conference on Ocean, San Antonio, TX, USA, 14–18 March 2010; pp. 99–108. [Google Scholar]
- Rus, D.; Hoppe, W.; Braisted, W.; Powar, N. Fatigue life prediction of corrosion-damaged high-strength steel using an equivalent stress riser (ESR) model. Part II: Model development and results. Int. J. Fatigue 2009, 31, 1454–1463. [Google Scholar]
- Pe’rez-Mora, R.; Palin-Luc, T.; Bathias, C.; Paris, P. Very high cycle fatigue of a high strength steel under seawater corrosion: A strong corrosion and mechanical damage coupling. Int. J. Fatigue 2015, 74, 156–165. [Google Scholar] [CrossRef]
- Ostash, O.; Kostyk, E.; Makoviichuk, I.; Chepil, R. Initiation and growth of corrosion-fatigue cracks near stress concentrators in V95pchT2 aluminum alloy. Mat. Sci. 1999, 35, 1–9. [Google Scholar] [CrossRef]
- Huang, X.G.; Xu, J.Q. Pit morphology characterization and corrosion fatigue crack nucleation analysis based on energy principle. Fatigue Fract Eng. Mater. Struct. 2012, 35, 606–613. [Google Scholar]
- Huang, Y.H.; Tu, S.H.; Xuan, F.Z. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution. Nucl. Eng. Des. 2013, 257, 45–52. [Google Scholar] [CrossRef]
- Zhao, W.M.; Wang, Y.X.; Zhang, T.M.; Wang, Y. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel. Corros. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Zhao, T.L.; Liu, Z.Y.; Du, C.W.; Sun, M.H.; Li, X.G. Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater. Int. J. Fatigue 2018, 110, 105–114. [Google Scholar] [CrossRef]
- Wei, R.; Speidel, M. Corrosion Fatigue: Chemistry, Mechanics and Microstructure; National Association of Corrosion Engineers: Houston, TX, USA, 1972. [Google Scholar]
- Zhao, W.M.; Xin, R.W.; He, Z.R.; Wang, Y. Contribution of anodic dissolution to the corrosion fatigue crack propagation of X80 steel in 3.5 wt. % NaCl solution. Corris. Sci. 2012, 63, 387–392. [Google Scholar] [CrossRef]
- Mhaede, M. Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73. Mater. Des. 2012, 41, 61–66. [Google Scholar] [CrossRef]
- Prevey, P.; Cammett, J. The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int. J. Fatigue 2004, 26, 975–982. [Google Scholar] [CrossRef] [Green Version]
- Ellor, J.A.; Young, W.T.; Repp, J. Thermally Sprayed Metal Coatings to Protect Steel Pilings: Final Report and Guide; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar]
- Diab, M.; Pang, X.; Jahed, H. The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al–1% Zn) extrusion. Surf. Coat. Technol. 2017, 309, 423–435. [Google Scholar] [CrossRef]
- Shaha, S.K.; Dayani, S.B.; Jahed, H. Influence of cold spray on the enhancement of corrosion fatigue of the AZ31B cast Mg alloy. In Proceedings of the TMS 147th Annual Meeting & Exhibition Supplemental Proceedings, Phoenix, AZ, USA, 11–15 March 2018; pp. 541–550. [Google Scholar]
- Okabe, J.; Oki, T.; Tms, M.M.I.J. Corrosion and corrosion fatigue behavior of zinc alloy hot-dip coated steel. In Proceedings of the 1st International Conference on Processing Materials for Properties, Honolulu, HI, USA, 7–10 November 1993; pp. 581–584. [Google Scholar]
- Tachibana, K.; Morinaga, Y.; Mayuzumi, M. Hot dip fine Zn and Zn–Al alloy double coating for corrosion resistance at coastal area. Corros. Sci. 2007, 49, 149–157. [Google Scholar] [CrossRef]
- Ahnia, F.; Demri, B. Evaluation of aluminum coatings in simulated marine environment. Surf. Coat. Technol. 2013, 220, 232–236. [Google Scholar] [CrossRef]
- Zhao, W.M.; Zhang, T.M.; Xin, R.Z.; Wang, M.M.; Ai, H.; Sun, J.B.; Wang, Y. Effects of thermally sprayed aluminum coating on the corrosion fatigue behavior of X80 steel in 3.5 wt. % NaCl. J. Ther. Spray Technol. 2015, 24, 974–983. [Google Scholar] [CrossRef]
- Shaharuddin, S.A. An investigation into the corrosion behaviour of zinc and chromium metallic coating on mildsteel substrate. Optoelectron. Integr. Circuits XV 2011, 8628, 356–360. [Google Scholar]
- Villalobos-Gutiérreza, C.J.; Gedler-Chacóna, G.E.; Barbera-Sosa, J.G.; Piñeirob, A.; Staia, M.H.; Lesage, J.; Chicot, D.; Mesmacque, G.; Puchi-Cabrera, E.S. Fatigue and corrosion fatigue behavior of an AA6063-T6 aluminum alloy coated with a WC–10Co–4Cr alloy deposited by HVOF thermal spraying. Surf. Coat. Technol. 2008, 22, 4572–4577. [Google Scholar] [CrossRef]
- Katayama, H.; Kuroda, S. Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area. Corros. Sci. 2013, 76, 35–41. [Google Scholar] [CrossRef]
- Orlando, S.; Troconis, D.; Daniela, R.; Adriana, T.; Romero, N.; Sánchez, M.; Campos, W. Six-year evaluation of thermal-sprayed coating of Zn/Al in tropical marine environments. Biol. Pharm. Bull. 2011, 21, 1215–1221. [Google Scholar]
- Kuroda, S.; Kawakita, J.; Komatsu, M.; Aoyagi, T.; Saitoh, H. Characterization of thermal sprayed Zn and Al coatings after 18 years exposure in marine environment (Meeting Abstracts). Electrochem. Soc. 2006, 10, 281. [Google Scholar]
- Kim, S.J.; Lee, S.J.; Park, Y.S.; Jeong, J.Y.; Jang, S.K. Influence of sealing on damage development in thermally sprayed Al–Zn–Zr coating. Sci. Adv. Mater. 2014, 6, 2066–2070. [Google Scholar] [CrossRef]
- Kong, C.K.; Brown, P.D.; Horlock, A.; Harris, S.J.; Mccartney, D.G. TEM assessment of HVOLF thermally sprayed Al–12 wt. % Sn–1 wt. % Cu alloy. Mat. Sci. Eng. A 2004, 375, 595–598. [Google Scholar] [CrossRef]
- Khan, R.A.; Kaur, A.; Singh, S.P.; Ahmad, S. Nonlinear dynamic analysis of marine risers under random loads for deepwater fields in Indian offshore. Procedia Eng. 2011, 14, 1334–1342. [Google Scholar] [CrossRef]
- Srivatsan, S.; Sudarshan, T.S. Mechanisms of fatigue crack initiation in metals: Role of aqueous environments. J. Mat. Sci. 1988, 23, 1521–1533. [Google Scholar] [CrossRef]
- McGrann, R.T.M.; Greving, D.J.; Shadley, J.R.; Rybicki, E.F.; Kruecke, T.L.; Bodger, B.E. The effect of coating residual stress on the fatigue life of thermal spray coated steel and aluminum. Surf. Coat. Technol. 1998, 108, 59–64. [Google Scholar] [CrossRef]
- Voorwald, H.J.C.; Souza, R.C.; Pigatin, W.L.; Cioffi, M.O.H. Evaluation of WC–17Co and WC–10Co–4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel. Surf. Coat. Technol. 2005, 190, 155–164. [Google Scholar] [CrossRef]
- Xu, J.Q. Mechanics of Fatigue; Science Press: Beijing, China, 2018. (in Chinese) [Google Scholar]
- Fatemi, A.; Vangt, L. Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. Int. J. Fatigue 1998, 20, 9–34. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Huang, X.; Yang, Z. Effect of Al–Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel. Materials 2019, 12, 1520. https://doi.org/10.3390/ma12091520
Han Z, Huang X, Yang Z. Effect of Al–Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel. Materials. 2019; 12(9):1520. https://doi.org/10.3390/ma12091520
Chicago/Turabian StyleHan, Zhongying, Xiaoguang Huang, and Zhicheng Yang. 2019. "Effect of Al–Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel" Materials 12, no. 9: 1520. https://doi.org/10.3390/ma12091520
APA StyleHan, Z., Huang, X., & Yang, Z. (2019). Effect of Al–Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel. Materials, 12(9), 1520. https://doi.org/10.3390/ma12091520