Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Tan Delta Measurement Method
2.3. PD Measurement Method
- Inception condition: Measurement was taken immediately after the first PD occurrence. The applied voltage Uapp was ramped-up from 0 to 25 kV.
- Steady-state condition: Measurement was taken after 30 min of the applied voltage. The applied voltage Uapp was fixed at 26, 28, and 30 kV.
3. Results
3.1. Tan Delta Before PD Activities
3.2. PD Activities at Inception Stage
3.3. PD Activities at Steady State Condition
3.3.1. Effect of Nanoparticles Type
3.3.2. Effect of Applied Voltage
3.3.3. Effect of Particles Weight Fraction
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Contreras, J.E.; Rodriguez, E.A.; Taha-Tijerina, J. Nanotechnology applications for electrical transformers—A review. Electr. Power Syst. Res. 2017, 143, 573–584. [Google Scholar] [CrossRef]
- Fal, J.; Mahian, O.; Żyła, G. Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review. Energies 2018, 11, 2942. [Google Scholar] [CrossRef]
- Primo, V.A.; Garcia, B.; Albarracin, R. Improvement of transformer liquid insulation using nanodielectric fluids: A review. IEEE Electr. Insul. Mag. 2018, 34, 13–26. [Google Scholar] [CrossRef]
- Pompili, M.; Bartnikas, R. On partial discharge measurement in dielectric liquids. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1476–1481. [Google Scholar] [CrossRef]
- Herchl, F.; Marton, K.; Tomčo, L.; Kopčanský, P.; Timko, M.; Koneracká, M.; Kolcunová, I. Breakdown and partial discharges in magnetic liquids. J. Phys. Condens. Matter 2008, 20, 204110. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T. Dielectric nanocomposites with insulating properties. Dielectr. Electr. Insul. IEEE Trans. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Nelson, J.K. Dielectric Polymer Nanocomposites, 1st ed.; Springer US: New York, NY, USA, 2010; ISBN 978-1-4419-1591-7. [Google Scholar]
- Zhong, X.; Wu, G.; Yang, Y.; Wu, X.; Lei, Y. Effects of nanoparticles on reducing partial discharge induced degradation of polyimide/Al2O3 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 594–602. [Google Scholar] [CrossRef]
- Jin, H.; Morshuis, P.; Mor, A.R.; Smit, J.J.; Andritsch, T. Partial discharge behavior of mineral oil based nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2747–2753. [Google Scholar] [CrossRef]
- Tian, W.; Tang, C.; Wang, Q.; Zhang, S.; Yang, Y.; Tian, W.; Tang, C.; Wang, Q.; Zhang, S.; Yang, Y. The Effect and Associate Mechanism of Nano SiO2 Particles on the Diffusion Behavior of Water in Insulating Oil. Materials 2018, 11, 2373. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.G.; Zahn, M.; O’Sullivan, F.M.; Pettersson, L.A.A.; Hjortstam, O.; Liu, R. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids. J. Appl. Phys. 2010, 107, 014310. [Google Scholar] [CrossRef]
- Zhong, Y.; Lv, Y.; Li, C.; Du, Y.; Chen, M.; Zhang, S.; Zhou, Y.; Chen, L. Insulating properties and charge characteristics of natural ester fluid modified by TiO2 semiconductive nanoparticles. Dielectr. Electr. Insul. IEEE Trans. 2013, 20, 135–140. [Google Scholar] [CrossRef]
- Sima, W.; Shi, J.; Yang, Q.; Huang, S.; Cao, X. Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: Experiment and theory. Dielectr. Electr. Insul. IEEE Trans. 2015, 22, 380–390. [Google Scholar] [CrossRef]
- Mohamad, N.; Azis, N.; Jasni, J.; Ab Kadir, M.; Yunus, R.; Yaakub, Z.; Mohamad, N.A.; Azis, N.; Jasni, J.; Ab Kadir, M.Z.A.; et al. Ageing Study of Palm Oil and Coconut Oil in the Presence of Insulation Paper for Transformers Application. Materials 2018, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Makmud, M.; Illias, H.; Chee, C.; Sarjadi, M. Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation. Energies 2018, 11, 333. [Google Scholar] [CrossRef]
- Lau, K.Y.; Vaughan, A.S.; Chen, G.; Hosier, I.L.; Holt, A.F. On the dielectric response of silica-based polyethylene nanocomposites. J. Phys. D. Appl. Phys. 2013, 46, 095303. [Google Scholar] [CrossRef]
- Mansour, D.-E.A.; Elsaeed, A.M.; Izzularab, M.A. The role of interfacial zone in dielectric properties of transformer oil-based nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3364–3372. [Google Scholar] [CrossRef]
- Liu, D.; Pourrahimi, A.M.; Pallon, L.K.H.; Sánchez, C.C.; Olsson, R.T.; Hedenqvist, M.S.; Fogelström, L.; Malmström, E.; Gedde, U.W. Interactions between a phenolic antioxidant, moisture, peroxide and crosslinking by-products with metal oxide nanoparticles in branched polyethylene. Polym. Degrad. Stab. 2016, 125, 21–32. [Google Scholar] [CrossRef]
- Cavallini, A.; Karthik, R.; Negri, F. The effect of magnetite, graphene oxide and silicone oxide nanoparticles on dielectric withstand characteristics of mineral oil. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2592–2600. [Google Scholar] [CrossRef]
- Illias, H.; Chen, G.; Lewin, P. Partial discharge behavior within a spherical cavity in a solid dielectric material as a function of frequency and amplitude of the applied voltage. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 432–443. [Google Scholar] [CrossRef]
- Du, Y.; Lv, Y.; Li, C.; Chen, M.; Zhong, Y.; Zhou, J.; Li, X.; Zhou, Y. Effect of semiconductive nanoparticles on insulating performances of transformer oil. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 770–776. [Google Scholar]
- Rafiq, M.; Lv, Y.; Li, C. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. J. Nanomater. 2016, 2016, 24. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Abd-Elhady, A.M.; Izzularab, M.A. Effect of nanoparticles on transformer oil breakdown strength: Experiment and theory. IET Sci. Meas. Technol. 2016, 10, 839–845. [Google Scholar] [CrossRef]
- Sima, W.; Shi, J.; Yang, Q.; Yu, F. Surface modification of nanoparticle and its charging dynamics during streamer discharge in transformer oil. Nanosci. Nanotechnol. Lett. 2014, 6, 424–430. [Google Scholar] [CrossRef]
- Velasco, J.; Frascella, R.; Albarracín, R.; Burgos, C.J.; Dong, M.; Ren, M.; Yang, L. Comparison of Positive Streamers in Liquid Dielectrics with and without Nanoparticles Simulated with Finite-Element Software. Energies 2018, 11, 361. [Google Scholar] [CrossRef]
- Illias, H.A.; Tunio, M.A.; Mokhlis, H.; Chen, G.; Bakar, A.H.A. Experiment and modeling of void discharges within dielectric insulation material under impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2252–2260. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Ge, Y.; Wang, L.; Sun, Z.; Zhou, Y.; Huang, M.; Li, C.; Yuan, J.; Qi, B. Effects of Nanoparticle Materials on Prebreakdown and Breakdown Properties of Transformer Oil. Appl. Sci. 2018, 8, 601. [Google Scholar] [CrossRef]
- Negri, F.; Cavallini, A. Effect of dielectrophoretic forces on nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1708–1717. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Development of a Model for Electrical Conductivity of Polymer/Graphene Nanocomposites Assuming Interphase and Tunneling Regions in Conductive Networks. Ind. Eng. Chem. Res. 2017, 56, 9107–9115. [Google Scholar] [CrossRef]
- Peppas, G.D.; Bakandritsos, A.; Charalampakos, V.P.; Pyrgioti, E.C.; Tucek, J.; Zboril, R.; Gonos, I.F. Ultrastable Natural Ester-Based Nanofluids for High Voltage Insulation Applications. ACS Appl. Mater. Interfaces 2016, 8, 25202–25209. [Google Scholar] [CrossRef] [PubMed]
- Dabbak, S.Z.; Illias, H.A.; Ang, B.C. Effect of surface discharges on different polymer dielectric materials under high field stress. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3758–3765. [Google Scholar] [CrossRef]
Sample Abbreviation | Amount of Nanoparticles [g/L] | |
---|---|---|
Fe3O4 | TiO2 | |
NE | - | - |
CNF1 | 0.01 | - |
CNF2 | 0.1 | - |
CNF3 | 1.0 | - |
SNF1 | - | 0.01 |
SNF2 | - | 0.1 |
SNF3 | - | 1.0 |
Samples | Shape Parameter,β | PDIV Average Value at 60%, α (kV) | PDIV Withstand Value, (kV) |
---|---|---|---|
NE | 5.95 | 22.05 | 10.18 |
CNF1 | 12.40 | 18.35 | 12.66 |
CNF2 | 21.49 | 18.30 | 15.20 |
CNF3 | 47.14 | 16.67 | 15.12 |
SNF1 | 11.77 | 18.97 | 12.83 |
SNF2 | 20.15 | 23.34 | 18.58 |
SNF3 | 20.21 | 25.37 | 20.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makmud, M.Z.H.; Illias, H.A.; Chee, C.Y.; Dabbak, S.Z.A. Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles. Materials 2019, 12, 816. https://doi.org/10.3390/ma12050816
Makmud MZH, Illias HA, Chee CY, Dabbak SZA. Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles. Materials. 2019; 12(5):816. https://doi.org/10.3390/ma12050816
Chicago/Turabian StyleMakmud, Mohamad Zul Hilmey, Hazlee Azil Illias, Ching Yern Chee, and Sameh Ziad Ahmad Dabbak. 2019. "Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles" Materials 12, no. 5: 816. https://doi.org/10.3390/ma12050816
APA StyleMakmud, M. Z. H., Illias, H. A., Chee, C. Y., & Dabbak, S. Z. A. (2019). Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles. Materials, 12(5), 816. https://doi.org/10.3390/ma12050816