Effects of Ions-Releasing Restorative Materials on the Dentine Bonding Longevity of Modern Universal Adhesives after Load-Cycle and Prolonged Artificial Saliva Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Dentine Specimens and Experimental Design
2.2. Micro-Tensile Bond Strength and Failure/Fractographic Analysis
3. Results
Micro-Tensile Bond Strength (MTBS) and Failure Mode Analysis
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Arhun, N.; Celik, C.; Yamanel, K. Clinical evaluation of resin-based composites in posterior restorations: Two-year results. Oper. Dent. 2010, 35, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite--state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Kakaboura, A.; Rahiotis, C.; Watts, D.; Silikas, N.; Eliades, G. 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent. Mater. 2007, 23, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Boaro, L.C.; Froes-Salgado, N.R.; Gajewski, V.E.; Bicalho, A.A.; Valdivia, A.D.; Soares, C.J.; Miranda Junior, W.G.; Braga, R.R. Correlation between polymerization stress and interfacial integrity of composites restorations assessed by different in vitro tests. Dent. Mater. 2014, 30, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, J.W.; Lindberg, A. A 15-year randomized controlled study of a reduced shrinkage stress resin composite. Dent. Mater. 2015, 31, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Shimada, Y.; Sadr, A.; Ikeda, M.; Tagami, J. The effects of cavity size and filling method on the bonding to Class I cavities. J. Adhes. Dent. 2008, 10, 447–453. [Google Scholar] [PubMed]
- Sakaguchi, R.L.; Peters, M.C.; Nelson, S.R.; Douglas, W.H.; Poort, H.W. Effects of polymerization contraction in composite restorations. J. Dent. 1992, 20, 178–182. [Google Scholar] [CrossRef]
- Davidson, C.L.; de Gee, A.J.; Feilzer, A. The competition between the composite-dentin bond strength and the polymerization contraction stress. J. Dent. Res. 1984, 63, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- De Munck, J.; Van Landuyt, K.; Coutinho, E.; Poitevin, A.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Micro-tensile bond strength of adhesives bonded to Class-I cavity-bottom dentin after thermo-cycling. Dent. Mater. 2005, 21, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Fleming, G.J.; Cara, R.R.; Palin, W.M.; Burke, F.J. Cuspal movement and microleakage in premolar teeth restored with resin-based filling materials cured using a ‘soft-start’ polymerisation protocol. Dent. Mater. 2007, 23, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.; Luis, H.; Martin, M.D.; Leroux, B.G.; Rue, T.; Leitao, J.; DeRouen, T.A. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J. Am. Dent. Assoc. 2007, 138, 775–783. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Shimada, Y.; Tagami, J. The effects of cavity size and incremental technique on micro-tensile bond strength of resin composite in Class I cavities. Dent. Mater. 2007, 23, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Niu, L.N.; Xie, H.; Zhang, Z.Y.; Zhou, L.Q.; Jiao, K.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Bonding of universal adhesives to dentine--Old wine in new bottles? J. Dent. 2015, 43, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Nikolaenko, S.A.; Lohbauer, U.; Roggendorf, M.; Petschelt, A.; Dasch, W.; Frankenberger, R. Influence of c-factor and layering technique on microtensile bond strength to dentin. Dent. Mater. 2004, 20, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Irie, M.; Suzuki, K.; Watts, D.C. Immediate performance of self-etching versus system adhesives with multiple light-activated restoratives. Dent. Mater. 2004, 20, 873–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irie, M.; Suzuki, K.; Watts, D.C. Marginal gap formation of light-activated restorative materials: Effects of immediate setting shrinkage and bond strength. Dent. Mater. 2002, 18, 203–210. [Google Scholar] [CrossRef]
- Sampaio, P.C.; de Almeida Junior, A.A.; Francisconi, L.F.; Casas-Apayco, L.C.; Pereira, J.C.; Wang, L.; Atta, M.T. Effect of conventional and resin-modified glass-ionomer liner on dentin adhesive interface of Class I cavity walls after thermocycling. Oper. Dent. 2011, 36, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Faus-Matoses, V.; Makeeva, I.; Nunez Marti, J.M.; Gonzalez Martinez, R.; Garcia Bautista, J.A.; Faus-Llacer, V. Effects of Polyacrylic Acid Pre-Treatment on Bonded-Dentine Interfaces Created with a Modern Bioactive Resin-Modified Glass Ionomer Cement and Subjected to Cycling Mechanical Stress. Materials 2018, 11, 1884. [Google Scholar] [CrossRef] [PubMed]
- Boksman, L.; Jordan, R.E.; Suzuki, M.; Charles, D.H. A visible light-cured posterior composite resin: Results of a 3-year clinical evaluation. J. Am. Dent. Assoc. 1986, 112, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Boksman, L.; Jordan, R.E.; Suzuki, M. Posterior composite restorations. Compend. Contin. Educ. Dent. 1984, 367, 372–373. [Google Scholar]
- Jordan, R.E.; Suzuki, M.; Gwinnett, A.J. Conservative applications of acid etch-resin techniques. Dent. Clin. N. Am. 1981, 25, 307–336. [Google Scholar] [PubMed]
- Toledano, M.; Cabello, I.; Aguilera, F.S.; Osorio, E.; Osorio, R. Effect of in vitro chewing and bruxism events on remineralization, at the resin-dentin interface. J. Biomech. 2015, 48, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Khvostenko, D.; Salehi, S.; Naleway, S.E.; Hilton, T.J.; Ferracane, J.L.; Mitchell, J.C.; Kruzic, J.J. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps. Dent. Mater. 2015, 31, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khvostenko, D.; Hilton, T.J.; Ferracane, J.L.; Mitchell, J.C.; Kruzic, J.J. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent. Mater. 2016, 32, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, W.D. The benefits of glass ionomer self-adhesive materials in restorative dentistry. Compend. Contin. Educ. Dent. 2006, 27, 308–314. [Google Scholar] [PubMed]
- Forsten, L. Resin-modified glass ionomer cements: Fluoride release and uptake. Acta Odontol. Scand. 1995, 53, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Forss, H.; Jokinen, J.; Spets-Happonen, S.; Seppa, L.; Luoma, H. Fluoride and mutans streptococci in plaque grown on glass ionomer and composite. Caries Res. 1991, 25, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Cheng, A.C. A review of glass ionomer restorations in the primary dentition. J. Can. Dent. Assoc. 1999, 65, 491–495. [Google Scholar] [PubMed]
- Fuss, M.; Wicht, M.J.; Attin, T.; Derman, S.H.M.; Noack, M.J. Protective Buffering Capacity of Restorative Dental Materials In Vitro. J. Adhes. Dent. 2017, 19, 177–183. [Google Scholar] [PubMed]
- Tezvergil-Mutluay, A.; Agee, K.A.; Hoshika, T.; Tay, F.R.; Pashley, D.H. The inhibitory effect of polyvinylphosphonic acid on functional matrix metalloproteinase activities in human demineralized dentin. Acta Biomater. 2010, 6, 4136–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, R.; Yamauti, M.; Sauro, S.; Watson, T.F.; Toledano, M. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation. J. Endod. 2012, 38, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Watson, T.; Moscardo, A.P.; Luzi, A.; Feitosa, V.P.; Banerjee, A. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements. J. Dent. 2018, 73, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Aguilera, F.S.; Sauro, S.; Cabello, I.; Osorio, E.; Osorio, R. Load cycling enhances bioactivity at the resin-dentin interface. Dent. Mater. 2014, 30, e169–e188. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Osorio, R.; Watson, T.F.; Toledano, M. Assessment of the quality of resin-dentin bonded interfaces: An AFM nano-indentation, muTBS and confocal ultramorphology study. Dent. Mater. 2012, 28, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Toledano, M.; Aguilera, F.S.; Mannocci, F.; Pashley, D.H.; Tay, F.R.; Watson, T.F.; Osorio, R. Resin-dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects of mechanical cycling load on microtensile bond strengths. Dent. Mater. 2011, 27, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Dorfer, C.E.; Staehle, H.J.; Wurst, M.W.; Duschner, H.; Pioch, T. The nanoleakage phenomenon: Influence of different dentin bonding agents, thermocycling and etching time. Eur. J. Oral Sci. 2000, 108, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Pashley, D.H.; Mannocci, F.; Tay, F.R.; Pilecki, P.; Sherriff, M.; Watson, T.F. Micropermeability of current self-etching and etch-and-rinse adhesives bonded to deep dentine: A comparison study using a double-staining/confocal microscopy technique. Eur. J. Oral Sci. 2008, 116, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Cama, G.; Brauer, D.S.; Sauro, S. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin. J. Dent. Res. 2017, 96, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Makowski, G.S.; Ramsby, M.L. Differential effect of calcium phosphate and calcium pyrophosphate on binding of matrix metalloproteinases to fibrin: Comparison to a fibrin-binding protease from inflammatory joint fluids. Clin. Exp. Immunol. 2004, 136, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Larraz, E.; Deb, S.; Elvira, C.; Roman, J.S. A novel amphiphilic acrylic copolymer based on Triton X-100 for a poly(alkenoate) glass-ionomer cement. Dent. Mater. 2006, 22, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Spencer, P. Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J. Biomed. Mater. Res. 2002, 59, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Spencer, P. Effect of acid etching time and technique on interfacial characteristics of the adhesive-dentin bond using differential staining. Eur. J. Oral Sci. 2004, 112, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Sattabanasuk, V.; Vachiramon, V.; Qian, F.; Armstrong, S.R. Resin-dentin bond strength as related to different surface preparation methods. J. Dent. 2007, 35, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent inc’orporated in universal adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; De Munck, J.; Mine, A.; Cardoso, M.V.; Peumans, M.; Van Meerbeek, B. Filler debonding & subhybrid-layer failures in self-etch adhesives. J. Dent. Res. 2010, 89, 1045–1050. [Google Scholar] [PubMed]
- Eick, J.D.; Robinson, S.J.; Chappell, R.P.; Cobb, C.M.; Spencer, P. The dentinal surface: Its influence on dentinal adhesion. Part III. Quintessence Int. 1993, 24, 571–582. [Google Scholar] [PubMed]
- Erhardt, M.C.; Toledano, M.; Osorio, R.; Pimenta, L.A. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: Effects of long-term water exposure. Dent. Mater. 2008, 24, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Spencer, P.; Walker, M.P. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J. Biomed. Mater. Res. A 2007, 81, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekçe, N.; Tuncer, S.; Demirci, M.; Pashaev, D. The bonding effect of adhesive systems and bulk-fill composites to sound and caries-affected dentine. J. Adhes. Sci. Technol. 2016, 30, 171–185. [Google Scholar] [CrossRef]
Name | Composition | Application |
---|---|---|
Scotchbond Universal, 3M Oral Care, USA (lot: 627524) | 10-MDP, HEMA, silane, dimethacrylate resins, Vitrebond™ copolymer, filler, ethanol, water, initiators, and catalysts (pH 2.7) | 1. Apply the adhesive on the surface and rub it for 20 s. 2. Gently air-dry the adhesive for approximately 5 s for the solvent to evaporate. 3. Light cure for 10 s (>500 mW/cm2). |
FuturaBond M+, VOCO, Germany (lot: 1742551) | HEMA, BIS-GMA, ethanol, Acidic adhesive monomer (10-MDP), UDMA, catalyst ethanol, water, initiators, and catalysts (pH 2.8) | 1. Apply the adhesive homogenously to the surface. 2. Rub for 20 s. 3. Dry off the adhesive layer with dry, oil-free air for at least 5 s. 4. Light cure for 10 s (>500 mW/cm2). |
Total Number of Specimens in Main Groups | RESIN COMPOSITE (72 Specimens) | RMGIC (72 Specimens) | ACTIVA (72 Specimens) | ||||||
---|---|---|---|---|---|---|---|---|---|
Number of specimens in sub-groups (18/group) | Number of specimens in aging sub-groups (6/ group) | ||||||||
SCU–ER: Scotchbond Etch and rinse | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec |
FTB–ER Futurabond M+ Etch and rinse | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec |
SCU–SE: Scotchbond Self-etch | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec |
FTB–SE: Futurabond M+ Self-etch | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec | CTR 6 spec | LC 6 spec | LC+AS 6 spec |
RESIN COMPOSITE | RMGIC | ACTIVA | |||||||
---|---|---|---|---|---|---|---|---|---|
CTR | LC | LC+AS | CTR | LC | LC+AS | CTR | LC | LC+AS | |
SCU–ER: Scotchbond Etch and rinse | 48.9 (7.6) A1 50/45/5 | 33.5 (5.6) B2 15/55/30 | 28.1 (5.7) B2 10/50/40 | 35.1 (7.1) B1 80/20/0 | 33.4 (7.8) B1 75/20/5 | 31.1 (8.8) B1 50/35/15 | 55.3 (6.1) A1 45/55/0 | 53.1 (7.1) A1 55/40/5 | 50.1 (6.8) A1 30/50/20 |
FTB–ER Futurabond M+ Etch and rinse | 51.2 (5.9) A1 55/40/5 | 58.1 (7.3) A1 45/50/5 | 55.3 (6.5) A1 20/65/15 | 31.3 (6.7) B1 70/30/0 | 32.1 (6.6) B1 65/35/0 | 32.1 (7.1) B1 60/30/5 | 54.2 (5.7) A1 45/55/0 | 52.7 (6.2) A1 55/40/5 | 52.1 (5.6) A1 30/50/20 |
SCU–SE: Scotchbond Self-etch | 45.1 (5.2) A1 45/50/5 | 44.4 (6.2) A1 40/50/10 | 34.1 (5.9) B1 10/55/35 | 32.3 (7.4) B1 70/30/0 | 34.4 (7.2) B1 65/30/5 | 29.6 (7.9) B1 50/45/5 | 46.1 (6.2) A1 40/55/5 | 49.8 (7.4) A1 30/65/5 | 49.5 (6.9) A1 45/50/5 |
FTB–SE: Futurabond M+ Self-etch | 49.2 (4.9) A1 40/50/10 | 48.3 (9.3) A1 45/50/5 | 45.6 (7.5) A1 25/60/15 | 34.1 (6.2) B1 75/25/0 | 31.5 (7.7) B1 70/30/50 | 30.5 (7.5) B1 60/35/5 | 48.1 (6.2) A1 40/55/5 | 51.1 (7.4) A1 45/50/5 | 50.5 (7.4) A1 45/50/5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauro, S.; Makeeva, I.; Faus-Matoses, V.; Foschi, F.; Giovarruscio, M.; Maciel Pires, P.; Martins Moura, M.E.; Almeida Neves, A.; Faus-Llácer, V. Effects of Ions-Releasing Restorative Materials on the Dentine Bonding Longevity of Modern Universal Adhesives after Load-Cycle and Prolonged Artificial Saliva Aging. Materials 2019, 12, 722. https://doi.org/10.3390/ma12050722
Sauro S, Makeeva I, Faus-Matoses V, Foschi F, Giovarruscio M, Maciel Pires P, Martins Moura ME, Almeida Neves A, Faus-Llácer V. Effects of Ions-Releasing Restorative Materials on the Dentine Bonding Longevity of Modern Universal Adhesives after Load-Cycle and Prolonged Artificial Saliva Aging. Materials. 2019; 12(5):722. https://doi.org/10.3390/ma12050722
Chicago/Turabian StyleSauro, Salvatore, Irina Makeeva, Vicente Faus-Matoses, Federico Foschi, Massimo Giovarruscio, Paula Maciel Pires, Maria Elisa Martins Moura, Aline Almeida Neves, and Vicente Faus-Llácer. 2019. "Effects of Ions-Releasing Restorative Materials on the Dentine Bonding Longevity of Modern Universal Adhesives after Load-Cycle and Prolonged Artificial Saliva Aging" Materials 12, no. 5: 722. https://doi.org/10.3390/ma12050722
APA StyleSauro, S., Makeeva, I., Faus-Matoses, V., Foschi, F., Giovarruscio, M., Maciel Pires, P., Martins Moura, M. E., Almeida Neves, A., & Faus-Llácer, V. (2019). Effects of Ions-Releasing Restorative Materials on the Dentine Bonding Longevity of Modern Universal Adhesives after Load-Cycle and Prolonged Artificial Saliva Aging. Materials, 12(5), 722. https://doi.org/10.3390/ma12050722