Scanning Magnetic Microscope Using a Gradiometric Configuration for Characterization of Rock Samples
Abstract
:1. Introduction
2. Magnetic Microscope
2.1. Mechanical Design and Hall Sensors
2.2. Calibration and Magnetic Measurements
3. Processing Magnetic Data Using Equivalent Layer Technique
3.1. Parametrization and Forward Problem
3.2. Inverse Problem
4. Results
4.1. Parnaíba Sample
Equivalent Layer Application to the Parnaíba Basin Sample Data
4.2. Vredefort Sample
Equivalent Layer Application to the Vredefort Sample Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Li, Z.-X.; Evans, D.A.D.; Wu, H.; Li, H.; Dong, J. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet. Sci. Lett. 2012, 353, 145–155. [Google Scholar] [CrossRef]
- Wang, H.; Weiss, B.P.; Bai, X.-N.; Downey, B.G.; Wang, J.; Wang, J.; Suavet, C.; Fu, R.R.; Zucolotto, M.E. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 2017, 355, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Weil, A.B.; Van Der Voo, R.; Van Der Pluijm, B.A.; Parés, J.M. The formation of an orocline by multiphase deformation: A paleomagnetic investigation of the Cantabria-Asturias Arc (northern Spain). J. Struct. Geol. 2000, 22, 735–756. [Google Scholar] [CrossRef]
- Sato, M.; Yamamoto, S.; Yamamoto, Y.; Okada, Y.; Ohno, M.; Tsunakawa, H.; Maruyama, S. Rock-magnetic properties of single zircon crystals sampled from the Tanzawa tonalitic pluton, central Japan. Earth Planets Space 2015, 67, 150. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.A.; Bruno, A.C.; Carvalho, H.R.; Weiss, B.P. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields. Meas. Sci. Technol. 2014, 25, 105401. [Google Scholar] [CrossRef]
- Weiss, B.P.; Lima, E.A.; Fong, L.E.; Baudenbacher, F.J. Paleomagnetic analysis using SQUID microscopy. J. Geophys. Res. Solid Earth. 2007, 112, B09105. [Google Scholar] [CrossRef]
- Baratchart, L.; Hardin, D.P.; Lima, E.A.; Saff, E.B.; Weiss, B.P. Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions. Inverse Probl. 2013, 29, 015004. [Google Scholar] [CrossRef] [Green Version]
- Wit, M.; Welker, G. Flux compensation for SQUID-detected Magnetic Resonance Force Microscopy. J. Magn. Magn. Mater. 2019, 98, 67–70. [Google Scholar] [CrossRef]
- Lazarides, N.; Hizanidis, J.; Tsironis, G.P. Controlled generation of chimera states in SQUID metasurfaces using DC flux gradients. Chaos Solitons Fractals 2020, 130, 109413. [Google Scholar] [CrossRef]
- Reis, A.L.A.; Oliveira, V.C., Jr.; Yokoyama, E.; Bruno, A.C.; Pereira, J.M.B. Estimating the magnetization distribution within rectangular rock samples. Geochem. Geophys. Geosyst. 2016, 17, 3350–3374. [Google Scholar] [CrossRef]
- Hui, F.; Lanza, M. Scanning probe microscopy for advanced nanoelectronics. Nat. Eletroc. 2019, 2, 221–229. [Google Scholar] [CrossRef]
- Kletetschka, G.; Schnabl, P.; Šifnerová, K.; Tasáryová, Z.; Manda, S.; Pruner, P. Magnetic scanning and interpretation of paleomagnetic data from Prague Synform’s volcanics. Stud. Geophys. Geod. 2013, 57, 103–117. [Google Scholar] [CrossRef]
- Pereira, J.M.B.; Pacheco, C.J.; Arenas, M.P.; Araujo, J.F.D.F.; Pereira, G.R.; Bruno, A.C. Novel scanning dc-susceptometer for characterization of heat-resistant steels with different states of aging. J. Magn. Magn. Mater. 2017, 442, 311–318. [Google Scholar] [CrossRef]
- Araujo, J.F.D.F.; Costa, M.C.; Louro, S.R.W.; Bruno, A.C. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 2017, 426, 159–162. [Google Scholar] [CrossRef]
- Oral, A.; Bending, S.J. Scanning Hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B 1996, 14, 1202–1204. [Google Scholar] [CrossRef]
- Araujo, J.F.D.F.; Pereira, J.M.B.; Bruno, A.C. Assembling a magnetometer for measuring the magnetic properties of iron oxide microparticles in the classroom laboratory. Am. J. Phys. 2019, 87, 471–475. [Google Scholar] [CrossRef]
- Araujo, J.F.D.F.; Bruno, A.C.; Louro, S.R.W. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles. Rev. Sci. Instrum. 2015, 85, 105103–105107. [Google Scholar] [CrossRef]
- Araujo, J.F.D.F.; Vieira, D.R.P.; Osorio, F.; Pöttker, W.E.; Porta, F.A.; Presa, P.; Perez, G.; Bruno, A.C. Versatile Hall magnetometer with variable sensitivity assembly for characterization of the magnetic properties of nanoparticles. J. Magn. Magn. Mater. 2019, 489, 165431. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.A.; Weiss, B.P. Obtaining vector magnetic field maps from single-component measurements of geological samples. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shearer, S.E.; Haney, M.M.; Dannemiller, N. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics 2010, 75, L1–L11. [Google Scholar] [CrossRef]
- Li, S.-L.; Li, Y. Inversion of magnetic anomaly on rugged observation surface in the presence of strong remanent magnetization. Geophysics 2014, 79, J11–J19. [Google Scholar] [CrossRef]
- Lana, C.; Gibson, R.L.; Reimold, W.U.; Minnitt, R.C. Geology and geochemistry of a granite-greenstone association in the southeastern Vredefort dome, South Africa. South. Afr. J. Geol. 2003, 106, 291–314. [Google Scholar] [CrossRef]
- Uieda, L.; Oliveira, V.C.; Ferreira, A.; Santos, H.B.; Caparica, J.F., Jr.; Markall, G.; Bentley, M.; Almeida, V. Fatiando a Terra v0.4: Modeling and inversion in geophysics. In Proceedings of the 12th Python in Science Conference, Austin, TX, USA, 24–29 June 2013; pp. 96–103. [Google Scholar] [CrossRef]
- Klein, E.L.; Angélica, R.S.; Harris, C.; Jourdan, F.; Babinski, M. Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north-northeastern Brazil: Geochemistry, Sr-Nd-Pb-O isotopes, 40Ar/39Ar geochronology, and relationships to CAMP magmatism. Lithos 2013, 222–242. [Google Scholar] [CrossRef]
- Pilkington, M.; Grieve, R.A.F. The geophysical signature of terrestrial impact craters. A.G.U. 1992, 30, 2. [Google Scholar] [CrossRef]
- Pilkington, M.; Hildebrand, A.R. Transient and disruption cavity dimensions of complex terrestrial impact structures derived from magnetic data. A.G.U. 2003, 30, 21. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, E.; Nédélec, A.; Baratoux, D.; Trindade, R.I.F.; Fabre, S.; Berger, G. Hydrothermal alteration in basalts from Vargeão impact structure, south Brazil, and implications for recognition of impact-induced hydrothermalism on Mars. Icarus 2015, 252, 347–365. [Google Scholar] [CrossRef]
- Carporzen, L.; Gilder, S.A.; Hart, R.J. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 2005, 435, 198–201. [Google Scholar] [CrossRef]
- Passchier, C.W. Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthélemy Massif, French Pyrenees. J. Struc. Geo. 1982, 4, 69–79. [Google Scholar] [CrossRef]
- Dressler, B.O.; Reimold, W.U. Order or chaos? Origin and mode of emplacement of breccias in floors of large impact structures. Earth-Sci. Rev. 2004, 67, 1–54. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, J.F.D.F.; Reis, A.L.A.; Correa, A.A.P.; Yokoyama, E.; Oliveira, V.C., Jr.; Mendoza, L.A.F.; Pacheco, M.A.C.; Luz-Lima, C.; Santos, A.F.; Osorio G., F.G.; et al. Scanning Magnetic Microscope Using a Gradiometric Configuration for Characterization of Rock Samples. Materials 2019, 12, 4154. https://doi.org/10.3390/ma12244154
Araujo JFDF, Reis ALA, Correa AAP, Yokoyama E, Oliveira VC Jr., Mendoza LAF, Pacheco MAC, Luz-Lima C, Santos AF, Osorio G. FG, et al. Scanning Magnetic Microscope Using a Gradiometric Configuration for Characterization of Rock Samples. Materials. 2019; 12(24):4154. https://doi.org/10.3390/ma12244154
Chicago/Turabian StyleAraujo, Jefferson F. D. F., Andre L. A. Reis, Angela A. P. Correa, Elder Yokoyama, Vanderlei C. Oliveira, Jr., Leonardo A. F. Mendoza, Marcos A. C. Pacheco, Cleanio Luz-Lima, Amanda F. Santos, Fredy G. Osorio G., and et al. 2019. "Scanning Magnetic Microscope Using a Gradiometric Configuration for Characterization of Rock Samples" Materials 12, no. 24: 4154. https://doi.org/10.3390/ma12244154
APA StyleAraujo, J. F. D. F., Reis, A. L. A., Correa, A. A. P., Yokoyama, E., Oliveira, V. C., Jr., Mendoza, L. A. F., Pacheco, M. A. C., Luz-Lima, C., Santos, A. F., Osorio G., F. G., Brito, G. E., Araujo, W. W. R., Tahir, Bruno, A. C., & Del Rosso, T. (2019). Scanning Magnetic Microscope Using a Gradiometric Configuration for Characterization of Rock Samples. Materials, 12(24), 4154. https://doi.org/10.3390/ma12244154