Influence of Vanadium on the Microstructure of IN718 Alloy by Laser Cladding
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Cladding Experiment Method
3. Results and Discussion
3.1. Solidification Structure Characteristics
3.2. Influence of V on Element Segregation
3.3. Influence of V on Laves Phase Formation
3.4. Influence of V on Hardness of Cladding Layer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, J.; Yu, H.; Chen, C.; Weng, F.; Dai, J. Research and development status of laser cladding on magnesium alloys: A review. Opt. Lasers Eng. 2017, 93, 195–210. [Google Scholar] [CrossRef]
- Sexton, L.; Lavin, S.; Byrne, G.; Kennedy, A. Laser cladding of aerospace materials. J. Mater. Process. 2002, 122, 63–68. [Google Scholar] [CrossRef]
- Mokadem, S.; Bezençon, C.; Hauert, A.; Jacot, A.; Kurz, W. Laser repair of superalloy single crystals with varying substrate orientations. Metall. Mater. Trans. 2007, 38, 1500–1510. [Google Scholar] [CrossRef]
- Ram, G.D.J.; Reddy, A.V.; Rao, K.P.; Reddy, G.M. Improvement in stress rupture properties of Inconel 718 gas tungsten arc welds using current pulsing. J. Mater. 2005, 40, 1497–1500. [Google Scholar] [CrossRef]
- Reddy, G.M.; Murthy, C.S.; Rao, K.S.; Rao, K.P. Improvement of mechanical properties of Inconel 718 electron beam welds—Influence of welding techniques and postweld heat treatment. Int. J. Adv. Manuf. Technol. 2009, 43, 671–680. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, Z.F.; Liu, P.; Gu, Y.F. Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy. Opt. Laser Technol. 2018, 98, 409–415. [Google Scholar] [CrossRef]
- Han, D.W.; Sun, W.R.; Yu, L.X. Effects of molybdenum on segregation and diffusion of niobium during the solidification and homogenization of IN718 alloy. Heat Treat. 2018, 33, 6–12. [Google Scholar]
- Miao, Z.; Shan, A.; Wu, Y. Effects of P and B addition on as-cast microstructure and homogenization parameter of Inconel 718 alloy. Nonferr. Met. Soc. China 2012, 22, 318–323. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, W.H.; Yu, L.X. Effects of Co on the solidification and precipitation behaviors of IN 718 alloy. Mater. Sci. Forum 2015, 816, 613–619. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, H.J. Effect of Zr addition on precipitates in K4169 superalloy. Res. Dev. 2012, 9, 6–10. [Google Scholar]
- Manikandan, S.G.K.; Sivakumar, D.; Rao, K.P. Laves phase in alloy 718 fusion zone—Microscopic and calorimetric studies. Mater. Charact. 2015, 100, 192–206. [Google Scholar] [CrossRef]
- Muroga, T.; Nagasaka, T.; Abe, K.; Chernov, V.M.; Matsui, H.; Smith, D.L. Vanadium alloys—Overview and recent results. J. Nucl. Mater. 2002, 307, 547–554. [Google Scholar] [CrossRef]
- Filipovic, M.; Kamberovic, Z.; Korac, M.; Jordovic, B. Effect of niobium and vanadium additions on the as-cast microstructure and properties of hypoeutectic Fe–Cr–C alloy. ISIJ Int. 2013, 53, 2160–2166. [Google Scholar] [CrossRef]
- Ma, W.; Xie, Y.; Chen, C.; Fukanuma, H.; Wang, J.; Ren, Z.; Huang, R. Microstructural and mechanical properties of high-performance Inconel 718 alloy by cold spraying. J. Alloy. Compd. 2019, 792, 456–467. [Google Scholar] [CrossRef]
- Ahmad, R.; Asmael, M.B.A.; Shahizan, N.R.; Gandouz, S. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition. Int. J. Miner. Metall. Mater. 2017, 24, 91–101. [Google Scholar] [CrossRef]
- Miao, Z.; Shan, A.; Wang, W.; Lu, J.; Xu, W.; Song, H.W. Solidification process of conventional superalloy by confocal scanning laser microscope. Trans. Nonferr. Met. Soc. China 2011, 21, 236–242. [Google Scholar] [CrossRef]
- Filipovic, M.; Kamberovic, Z.; Korac, M. Solidification of high chromium white cast iron alloyed with vanadium. Mater. Trans. 2011, 52, 386–390. [Google Scholar] [CrossRef]
- Baker, T.N. Processes, microstructure and properties of vanadium microalloyed steels. Mater. Sci. Technol. 2009, 25, 1083–1107. [Google Scholar] [CrossRef]
- Long, Y.T.; Nie, P.L.; Li, Z.G.; Huang, J.; Xiang, L.I.; Xu, X.M. Segregation of niobium in laser cladding Inconel 718 superalloy. Trans. Nonferr. Met. Soc. China 2016, 26, 431–436. [Google Scholar] [CrossRef]
- Knorovsky, G.A.; Cieslak, M.J.; Headley, T.J.; Romig, A.D.; Hammetter, W.F. Inconel 718: A solidification diagram. Metall. Mater. Trans. 1989, 20, 2149–2158. [Google Scholar] [CrossRef]
- Chen, M.R.; Lin, S.J.; Yeh, J.W.; Chuang, M.H.; Chen, S.K.; Huang, Y.S. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. 2006, 37, 1363–1369. [Google Scholar] [CrossRef]
- Sozanska, M.; Maciejny, A.; Dagbert, C.; Galland, J.; Hyspecká, L. Use of quantitative metallography in the evaluation of hydrogen action during martensitic transformations. Mater. Sci. Eng. 1999, 273, 485–490. [Google Scholar] [CrossRef]
- Sui, S.; Chen, J.; Fan, E.; Yang, H.; Lin, X.; Huang, W. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718. Mater. Sci. Eng. 2017, 695, 6–13. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, Z.G.; Nie, P.L.; Wu, Y.X. Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf. Eng. 2013, 29, 414–418. [Google Scholar] [CrossRef]
- Stevens, E.L.; Toman, J.; Chmielus, M. Variation of hardness, microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids. Mater. Des. 2017, 119, 188–198. [Google Scholar] [CrossRef]
Parameters | Laser Power (W) | Scanning Speed (mm/s) | Powder Federate (g·min−1) | Shield Gas Flow (L·min−1) |
---|---|---|---|---|
- | 1200 | 8 | 18 | 15 |
Elements | Ni | Cr | Nb | Mo | Ti | Al | C | Fe | V |
---|---|---|---|---|---|---|---|---|---|
No.1 Alloy | 53.1 | 18.43 | 5 | 3.18 | 1.06 | 0.54 | 0.014 | 18.61 | 0.066 |
No.2 Alloy | 53.2 | 18.28 | 5 | 3.2 | 1.08 | 0.54 | 0.015 | 18.64 | - |
Alloy | Ti | Cr | Fe | Ni | Nb | Mo |
---|---|---|---|---|---|---|
No.1 | 1.64 | 14.14 | 12.95 | 45.04 | 21.24 | 5 |
No.2 | 2.24 | 13.18 | 16.98 | 34.97 | 26.15 | 6.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Xie, H.; Sun, C.; Zhao, X.; Li, F. Influence of Vanadium on the Microstructure of IN718 Alloy by Laser Cladding. Materials 2019, 12, 3839. https://doi.org/10.3390/ma12233839
Yang K, Xie H, Sun C, Zhao X, Li F. Influence of Vanadium on the Microstructure of IN718 Alloy by Laser Cladding. Materials. 2019; 12(23):3839. https://doi.org/10.3390/ma12233839
Chicago/Turabian StyleYang, Kun, Hualong Xie, Cong Sun, Xiaofei Zhao, and Fei Li. 2019. "Influence of Vanadium on the Microstructure of IN718 Alloy by Laser Cladding" Materials 12, no. 23: 3839. https://doi.org/10.3390/ma12233839
APA StyleYang, K., Xie, H., Sun, C., Zhao, X., & Li, F. (2019). Influence of Vanadium on the Microstructure of IN718 Alloy by Laser Cladding. Materials, 12(23), 3839. https://doi.org/10.3390/ma12233839