Next Article in Journal
Interfacial Bonding and Abrasive Wear Behavior of Iron Matrix Composite Reinforced by Ceramic Particles
Previous Article in Journal
Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions
Previous Article in Special Issue
Design Variation of a Dual-Antigen Liposomal Vaccine Carrier System
Open AccessArticle

Randomized Controlled Clinical Trial of Nanostructured Carbonated Hydroxyapatite for Alveolar Bone Repair

1
Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro CEP 4020-140, Brazil
2
Oral Surgery Department, Dentistry School, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Nova Iguaçu, Rio de Janeiro 26260-045, Brazil
3
Department of Oral Diagnosis, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro 24020-140, Brazil
4
Department of Orthodontics, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 30/sala 214, Niterói, Rio de Janeiro 24020-140, Brazil
5
Department of Condsensed Matter, Applied Physics and Nanoscience, Centro Brasileiro de Pesquisas Físicas CBPF, Rua Doutor Xavier Sigaud, 150 Urca, Rio de Janeiro, Rio de Janeiro 22290-180, Brazil
6
Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro 24020-140, Brazil
7
Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rua Nossa Senhora das Graças, 50-Xerém, Duque de Caxias, Rio de Janeiro 25250-020, Brazil
*
Author to whom correspondence should be addressed.
Materials 2019, 12(22), 3645; https://doi.org/10.3390/ma12223645
Received: 5 October 2019 / Revised: 29 October 2019 / Accepted: 31 October 2019 / Published: 6 November 2019
(This article belongs to the Special Issue Biomaterial Design for Disease Applications)
The properties of the biodegradation of bone substitutes in the dental socket after extraction is one of the goals of regenerative medicine. This double-blind, randomized, controlled clinical trial aimed to compare the effects of a new bioabsorbable nanostructured carbonated hydroxyapatite (CHA) with a commercially available bovine xenograft (Bio-Oss®) and clot (control group) in alveolar preservation. Thirty participants who required tooth extraction and implant placement were enrolled in this study. After 90 days, a sample of the grafted area was obtained for histological and histomorphometric evaluation and an implant was installed at the site. All surgical procedures were successfully carried out without complications and none of the patients were excluded. The samples revealed a statistically significant increase of new bone formation (NFB) in the CHA group compared with Bio-Oss® after 90 days from surgery (p < 0.05). However, the clot group presented no differences of NFB compared to CHA and Bio-Oss®. The CHA group presented less amount of reminiscent biomaterial compared to Bio-Oss®. Both biomaterials were considered osteoconductors, easy to handle, biocompatible, and suitable for alveolar filling. Nanostructured carbonated hydroxyapatite spheres promoted a higher biodegradation rate and is a promising biomaterial for alveolar socket preservation before implant treatment. View Full-Text
Keywords: clinical trial; xenograft; calcium phosphate; bone loss clinical trial; xenograft; calcium phosphate; bone loss
Show Figures

Figure 1

MDPI and ACS Style

Resende, R.F.B.; Sartoretto, S.C.; Uzeda, M.J.; Alves, A.T.N.N.; Calasans-Maia, J.A.; Rossi, A.M.; Granjeiro, J.M.; Calasans-Maia, M.D. Randomized Controlled Clinical Trial of Nanostructured Carbonated Hydroxyapatite for Alveolar Bone Repair. Materials 2019, 12, 3645.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop