Simple Synthesis of K4Nb6O17/C Nanosheets for High-Power Lithium-Ion Batteries with Good Stability
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
2.4. Electrochemical Tests
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fairley, P. Energy storage: Power revolution. Nature 2015, 526, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wang, S.; Zhang, S.; Wang, Y.; Xu, Q.; Hu, W.; Zhou, Y.; Wang, Z.; An, C.; Zhang, J. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance. Mater. Chem. Phys. 2017, 192, 100–107. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Pandolfo, A.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Chao, D.; Xia, X.; Liu, J.; Fan, Z.; Ng, C.; Lin, J.; Zhang, H.; Shen, Z.; Fan, H. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhai, Y.; Liu, H.; Li, L. Single-layer MnO2 nanosheets: From controllable synthesis to free-standing film for flexible supercapacitors. Mater. Lett. 2016, 176, 33–37. [Google Scholar] [CrossRef]
- Achour, A.; Lucio-Porto, R.; Chaker, M.; Arman, A.; Ahmadpourian, A.; Soussou, M.A.; Boujtita, M.; Brizoual, L.L.; Djouadi, M.A.; Brousse, T. Titanium vanadium nitride electrode for micro-supercapacitors. Electrochem. Commun. 2017, 77, 40–43. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, Y.; Tang, Q.; Hu, A.; Xiao, K.; Zhang, S.; Deng, W.; Fan, B.; Zhu, Y.; Chen, X. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors. J. Power Sources 2017, 361, 70–79. [Google Scholar] [CrossRef]
- He, Y.; Muhetaer, A.; Li, J.; Wang, F.; Liu, C.; Li, Q.; Xu, D. Ultrathin Li4Ti5O12 Nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv. Energy Mater. 2017, 7, 1700950. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Shi, Z.; Xu, Z. Mesoporous carbon material as cathode for high performance lithium-ion capacitor. Chin. Chem. Lett. 2018, 29, 620–623. [Google Scholar] [CrossRef]
- Padashbarmchi, Z.; Hamidian, A.; Noonan, O.; Khorasani, N.; Kazemzad, M. A simple approach to prepare metal oxides supra-structures for LIBs. J. New Mater. Electrochem. Syst. 2015, 18, 87–90. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Lai, Y.; Zeng, D.; Cheng, H. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte. Sci. Rep. 2016, 6, 22048. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wei, K.; Ichihara, M.; Zhou, H. NbO nanobelts: A lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 2008, 10, 980–983. [Google Scholar] [CrossRef]
- Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye-sensitive solar cells. J. Am. Ceram. Soc. 2009, 92, 289–301. [Google Scholar] [CrossRef]
- Liu, X.; Que, W.; Xing, Y.; Yang, Y.; Yin, X.; Shao, J. New architecture of a petal-shaped NbO nanosheet film on FTO glass for high photocatalytic activity. RSC Adv. 2016, 6, 9581–9588. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, C.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Free-Standing T-Nb2O5/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano 2017, 9, 11200–11208. [Google Scholar] [CrossRef]
- Sun, H.; Mei, L.; Liang, J.; Zhao, Z.; Lee, C.; Fei, H.; Ding, M.; Lau, J.; Li, M.; Wang, C.; et al. Three-dimensional holey-graphene/ niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604. [Google Scholar] [CrossRef]
- Kudo, A.; Sayama, K.; Tanaka, A.; Asakura, K.; Domen, K.; Maruya, K.; Onishi, T. Nickel-Loaded K4Nb6O17 Photocatalyst in the Decomposition of H2O into H2 and O2: Structure and Reaction Mechanism. J. Catal. 1989, 120, 337–352. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, Y.; Shang, L.; Shi, R.; Wu, L.; Tung, C.-H.; Zhang, T. Facile synthesis of ultrathin SnNb2O6 nanosheets towards improved visible-light photocatalytic H2-production activity. Chem. Commun. 2016, 52, 8239–8242. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Li, M.; Wang, J.; Zhang, P.; Jiang, K.; Zhang, J.; Hu, Z.; Chu, J. Boosted adsorption–photocatalytic activities and potential lithium intercalation applications of layered potassium hexaniobate nano-family. RSC Adv. 2017, 7, 28105–28113. [Google Scholar] [CrossRef]
- Kestigian, M.; Leipziger, F.; Carter, J.R.; Garabedian, F.G. Preparation of K4Nb6O17 Single Crystals. J. Am. Ceram. Soc. 2010, 49, 517. [Google Scholar] [CrossRef]
- Miyamoto, N.; Yamamoto, H.; Kaito, R.; Kuroda, K. Formation of extraordinarily large nanosheets from K4Nb6O17 crystals. Chem. Commun. 2002, 20, 2378–2379. [Google Scholar] [CrossRef]
- Lim, E.; Jo, C.; Kim, H.; Kim, M.H.; Mun, Y.; Chun, J.; Ye, Y.; Hwang, J.; Ha, K.S.; Roh, K.C. Facile synthesis of Nb2O5@Carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 2015, 9, 7497–7505. [Google Scholar] [CrossRef] [PubMed]
- Lübke, M.; Sumboja, A.; Johnson, I.D.; Dan, J.L.B.; Shearing, P.R.; Liu, Z.; Darr, J.A. High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim. Acta 2016, 192, 363–369. [Google Scholar]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Agubra, V.A.; Zuniga, L.; de la Garza, D.; Gallegos, L.; Pokhrel, M.; Alcoutlabi, M. Forcespinning: A new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ion. 2016, 286, 72–82. [Google Scholar] [CrossRef]
- Agubra, V.A.; Zuniga, L.; de la Garza, D.; Gallegos, L.; Pokhrel, M.; Alcoutlabi, M. A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim. Acta 2017, 224, 608–621. [Google Scholar] [CrossRef]
- Huang, X.D.; Zhang, F.; Gan, X.F.; Huang, Q.A.; Yang, J.Z.; Lai, P.T.; Tang, W.M. Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 2018, 8, 5189–5196. [Google Scholar] [CrossRef]
- Cheong, J.Y.; Kim, C.; Jung, J.W.; Yoon, K.R.; Cho, S.H.; Youn, D.Y.; Jang, H.; Kim, I.D. Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery. Small 2017, 13, 1603610. [Google Scholar] [CrossRef]
- Jiao, X.; Hao, Q.; Liu, P.; Xia, X.; Wu, L.; Liu, X. Facile synthesis of T-Nb2O5 nanosheets/nitrogen and sulfur co-doped graphene for high performance lithium-ion hybrid supercapacitors. Sci. Chin. Mater. 2018, 61, 273–284. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H.; Wang, L.; Zhang, L.; Huang, Y.; Hu, X. Microwave-assisted rapid synthesis of self-Assembled T-Nb2O5 nanowires for high-energy hybrid supercapacitors. Chem. Eur. J. 2017, 23, 4203–4209. [Google Scholar] [CrossRef]
- Lim, E.; Kim, H.; Jo, C.; Chun, J.; Ku, K.; Kim, S.; Lee, H.; Nam, I.; Yoon, S.; Kang, K. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 2014, 8, 8968–8978. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jin, B.; Bao, K.; Xie, H.; Guo, J.; Ji, X.; Zhang, R.; Jiang, Q. Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries. Int. J. Hydrog. Energy 2016, 42, 6065–6071. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Liu, Y.; Sun, R.; Ma, J.; Guo, J.; Hu, M. Urchin-like hierarchical H-Nb2O5 microspheres: Synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Trans. 2017, 46, 10935–10940. [Google Scholar] [CrossRef] [PubMed]
Composites | Rate Capability | Cycling Stability |
---|---|---|
T-Nb2O5/NS-G [30] | 168 mA h g−1 (0.05 A g−1) | 50 cycles ~93.4% (0.1 A g−1) |
106 mA h g−1 (5 A g−1) | ||
T-Nb2O5@C [31] | 188 mA h g−1 (0.1 A g−1) | 1000 cycles ~82.2% (0.1 A g−1) |
58 mA h g−1 (5 A g−1) | ||
Nb2O5/carbon [32] | 170 mA h g−1 (0.05 A g−1) | 4000 cycles ~80% (5 A g−1) |
110 mA h g−1 (5 A g−1) | ||
Porous Nb2O5 [33] | 159 mA h g−1 (0.2 A g−1) | 150 cycles ~94% (0.5 A g−1) |
130 mA h g−1 (1 A g−1) | ||
H-Nb2O5 microspheres [34] | 161 mA h g−1 (1 C) | 500 cycles ~85% (5 C) |
109 mA h g−1 (5 C) | ||
K4Nb6O17-NL [20] | 145 mA h g−1 (0.05 A g−1) | 200 cycles ~86% (0.2 A g−1) |
81 mA h g−1 (1 A g−1) | ||
Our work | 381 mA h g−1 (0.05 A g−1) | 200 cycles ~84% (0.1 A g−1) |
133 mA h g−1 (1 A g−1) | 1000 cycles ~64% (1 A g−1) | |
67 mA h g−1 (5 A g−1) | 1000 cycles ~84% (5 A g−1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhai, Y.; Kuang, C.; Liu, H.; Li, L. Simple Synthesis of K4Nb6O17/C Nanosheets for High-Power Lithium-Ion Batteries with Good Stability. Materials 2019, 12, 262. https://doi.org/10.3390/ma12020262
Wang X, Zhai Y, Kuang C, Liu H, Li L. Simple Synthesis of K4Nb6O17/C Nanosheets for High-Power Lithium-Ion Batteries with Good Stability. Materials. 2019; 12(2):262. https://doi.org/10.3390/ma12020262
Chicago/Turabian StyleWang, Xiangwei, Yunyun Zhai, Chunxia Kuang, Haiqing Liu, and Lei Li. 2019. "Simple Synthesis of K4Nb6O17/C Nanosheets for High-Power Lithium-Ion Batteries with Good Stability" Materials 12, no. 2: 262. https://doi.org/10.3390/ma12020262
APA StyleWang, X., Zhai, Y., Kuang, C., Liu, H., & Li, L. (2019). Simple Synthesis of K4Nb6O17/C Nanosheets for High-Power Lithium-Ion Batteries with Good Stability. Materials, 12(2), 262. https://doi.org/10.3390/ma12020262