Investigation of Step-Stress Accelerated Degradation Test Strategy for Ultraviolet Light Emitting Diodes
Abstract
1. Introduction
2. Test Samples and Experiments
3. Theory and Modeling
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chevremont, A.C.; Farnet, A.M.; Coulomb, B.; Boudenne, J.L. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters. Sci. Total. Env. 2012, 426, 304–310. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Dai, F.; Zhu, J.; Li, P.; Ma, X.; Hao, Y. Influence of constant current stress on the conduction mechanisms of reverse leakage current in UV-A light emitting diodes. Superlattices Microstruct. 2017, 112, 105–110. [Google Scholar] [CrossRef]
- Arques-Orobon, F.; Nunez, N.; Vazquez, M.; González-Posadas, V. UV LEDs reliability tests for fluoro-sensing sensor application. Microelectron. Reliab. 2014, 54, 2154–2158. [Google Scholar] [CrossRef]
- Chen, J.; Loeb, S.; Kim, J.H. LED revolution: fundamentals and prospects for UV disinfection applications. Env. Sci. Water Res. Technol. 2017, 3, 188–202. [Google Scholar] [CrossRef]
- Arques-Orobon, F.J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V. High-power UV-LED degradation: Continuous and cycled working condition influence. Solid State Electronics 2015, 111, 111–117. [Google Scholar] [CrossRef]
- Gong, Z.; Gaevski, M.; Adivarahan, V.; Sun, W.; Shatalov, M.; Khan, M.A. Optical power degradation mechanisms in AlGaN-based deep ultraviolet light emitting diodes on sapphire DUV. Appl. Phys. Lett. 2006, 88, 121106. [Google Scholar] [CrossRef]
- Meneghini, M.; Barbisan, D.; Bilenko, Y.; Shatalov, M.; Yang, J.; Gaska, R.; Meneghesso, G.; Zanoni, E. Defect-related degradation of Deep-UV-LEDs. Microelectron. Reliab. 2010, 50, 1538–1542. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, W.; Sun, B. Multidimensional Data-Driven Life Prediction Method for White LEDs Based on BP-NN and Improved-Adaboost Algorithm. Ieee Access 2017, 5, 21660–21668. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Z.; Feng, Q.; Sun, B.; Qian, C.; Ren, Y.; Jiang, X. A Gamma Process-Based Prognostics Method for CCT Shift of High-Power White LEDs. Ieee Trans. Electron Devices 2018, 65, 2909–2916. [Google Scholar] [CrossRef]
- Yang, X.; Sun, B.; Wang, Z.; Qian, C.; Ren, Y.; Yang, D.; Feng, Q. An Alternative Lifetime Model for White Light Emitting Diodes under Thermal–Electrical Stresses. Materials 2018, 11, 817. [Google Scholar] [CrossRef]
- Yung, K.C.; Sun, B.; Jiang, X.; Yung, W.K.C. Prognostics-based qualification of high-power white LEDs using Lévy process approach. Mech. Syst. Signal Process. 2017, 82, 206–216. [Google Scholar] [CrossRef]
- Nelson, W.B. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis; John Wiley & Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Sun, B.; Jiang, X.; Yung, K.C.; Fan, J.; Pecht, M.G.; Yung, W.K.C. A Review of Prognostic Techniques for High-Power White LEDs. Ieee Trans. Power Electron. 2017, 32, 6338–6362. [Google Scholar] [CrossRef]
- Glaab, J.; Ploch, C.; Kelz, R.; Stölmacker, C.; Lapeyrade, M.; Ploch, N.L.; Rass, J.; Kolbe, T.; Einfeldt, S.; Mehnke, F.; et al. Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature. J. Appl. Phys. 2015, 118, 094504. [Google Scholar] [CrossRef]
- Monti, D.; Meneghini, M.; De Santi, C.; Meneghesso, G.; Zanoni, E.; Glaab, J.; Rass, J.; Einfeldt, S.; Mehnke, F.; Enslin, J.; et al. Defect-Related Degradation of AlGaN-Based UV-B LEDs. Ieee Trans. Electron Devices 2016, 64, 200–205. [Google Scholar] [CrossRef]
- Zhou, J.; Ibrahim, M.S.; Fan, J.J.; Fan, X.J.; Zhang, G.Q. Lifetime Prediction of Ultraviolet Light-emitting Diodes with Accelerated Wiener Degradation Process. In Proceedings of the 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Hannover, Germany, 24–27 March 2019. [Google Scholar]
- Trivellin, N.; Monti, D.; De Santi, C.; Buffolo, M.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Current induced degradation study on state of the art DUV LEDs. Microelectron. Reliab. 2018, 90, 868–872. [Google Scholar] [CrossRef]
- Pinos, A.; Marcinkevičius, S.; Shur, M. High current-induced degradation of AlGaN ultraviolet light emitting diodes. J. Appl. Phys. 2011, 109, 103108. [Google Scholar] [CrossRef]
- Reed, M.L.; Wraback, M.; Lunev, A.; Bilenko, Y.; Hu, X.; Sattu, A.; Deng, J.; Shatalov, M.; Gaska, R. Device self-heating effects in deep UV LEDs studied by systematic variation in pulsed current injection. Phys. Status Solidi (C) 2008, 5, 2053–2055. [Google Scholar] [CrossRef]
- Escobar, L.A.; Meeker, W.Q. A Review of Accelerated Test Models. Stat. Sci. 2006, 21, 552–577. [Google Scholar] [CrossRef]
- He, Q.; Chen, W.; Pan, J.; Qian, P. Improved step stress accelerated life testing method for electronic product. Microelectron. Reliab. 2012, 52, 2773–2780. [Google Scholar]
- Cai, M.; Yang, D.; Tian, K.; Zhang, P.; Chen, X.; Liu, L.; Zhang, G. Step-stress accelerated testing of high-power LED lamps based on subsystem isolation method. Microelectron. Reliab. 2015, 55, 1784–1789. [Google Scholar] [CrossRef]
- Cai, M.; Yang, D.; Zheng, J.; Mo, Y.; Huang, J.; Xu, J.; Chen, W.; Zhang, G.; Chen, X. Thermal degradation kinetics of LED lamps in step-up-stress and step-down-stress accelerated degradation testing. Appl. Eng. 2016, 107, 918–926. [Google Scholar] [CrossRef]
- Qian, C.; Fan, J.; Fang, J.; Yu, C.; Ren, Y.; Fan, X.; Zhang, G. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method. Materials 2017, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, X. Study on LED devices step-stress accelerated degradation test. In Proceedings of the 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 11–14 August 2013; pp. 1162–1165. [Google Scholar]
- Benavides, E.M. Reliability model for step-stress and variable-stress situations. Ieee Trans. Reliab. 2011, 60, 219–233. [Google Scholar] [CrossRef]
- Tseng, S.T.; Wen, Z.C. Step-Stress Accelerated Degradation Analysis for Highly Reliable Products. J. Qual. Technol. 2000, 32, 209–216. [Google Scholar] [CrossRef]
- Hu, C.H.; Plante, R.D.; Tang, J. Statistical equivalency and optimality of simple step-stress accelerated test plans for the exponential distribution. Nav. Res. Logist. 2013, 60, 19–30. [Google Scholar] [CrossRef]
- IES LM-80-15. Approved Method for Lumen Maintenance Testing of LED Light Source; Illuminating Engineering Society: New York, NY, USA, 2015. [Google Scholar]
- IES TM-21-11. Projecting Long Term Lumen Maintenance of LED Light Sources; Illuminating Engineering Society: New York, NY, USA, 2011. [Google Scholar]
Test ID | T (°C) | I (mA) | α | β |
---|---|---|---|---|
Test A | 55 | 150 | 9.294 × 10−5 | 1.00 |
55 | 200 | 5.546 × 10−5 | 0.98 | |
55 | 250 | 7.473 × 10−5 | 0.99 | |
55 | 300 | 5.791 × 10−5 | 0.96 | |
55 | 350 | 8.670 × 10−5 | 1.03 | |
55 | 400 | 1.009 × 10−4 | 1.07 | |
55 | 450 | 1.189 × 10−4 | 1.13 | |
Test B | 55 | 350 | 1.683 × 10−4 | 0.99 |
60 | 350 | 6.555 × 10−5 | 0.93 | |
65 | 350 | 6.790 × 10−5 | 0.93 | |
70 | 350 | 6.228 × 10−5 | 0.92 | |
75 | 350 | 4.202 × 10−5 | 0.88 | |
80 | 350 | 6.597 × 10−5 | 0.93 | |
85 | 350 | 9.194 × 10−5 | 1.00 | |
Test C | 55 | 700 | 4.683 × 10−4 | 0.97 |
60 | 700 | 2.033 × 10−4 | 0.86 | |
65 | 700 | 3.380 × 10−4 | 0.97 | |
70 | 700 | 1.804 × 10−4 | 0.78 | |
75 | 700 | 5.204 × 10−4 | 1.52 | |
80 | 700 | 5.278 × 10−4 | 1.50 | |
Test D | 55 | 350 | 6.857 × 10−5 | 0.93 |
Test ID | Relevant Model | a | b |
---|---|---|---|
Test A | Equation (5) | −14.27 | 0.85 |
Test B | Equation (4) | −6.17 | −1172.23 |
Test C | Equation (4) | 8.24 | −5532.46 |
Test ID | α | Error |
---|---|---|
Test A | 9.223 × 10−5 | 34.4% |
Test B | 5.886 × 10−5 | −14.1% |
Test C | 1.787 × 10−4 | 160.9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, B.; Wang, Z.; Qian, C.; Ren, Y.; Sun, B.; Yang, D.; Jing, Z.; Fan, J. Investigation of Step-Stress Accelerated Degradation Test Strategy for Ultraviolet Light Emitting Diodes. Materials 2019, 12, 3119. https://doi.org/10.3390/ma12193119
Liang B, Wang Z, Qian C, Ren Y, Sun B, Yang D, Jing Z, Fan J. Investigation of Step-Stress Accelerated Degradation Test Strategy for Ultraviolet Light Emitting Diodes. Materials. 2019; 12(19):3119. https://doi.org/10.3390/ma12193119
Chicago/Turabian StyleLiang, Banglong, Zili Wang, Cheng Qian, Yi Ren, Bo Sun, Dezhen Yang, Zhou Jing, and Jiajie Fan. 2019. "Investigation of Step-Stress Accelerated Degradation Test Strategy for Ultraviolet Light Emitting Diodes" Materials 12, no. 19: 3119. https://doi.org/10.3390/ma12193119
APA StyleLiang, B., Wang, Z., Qian, C., Ren, Y., Sun, B., Yang, D., Jing, Z., & Fan, J. (2019). Investigation of Step-Stress Accelerated Degradation Test Strategy for Ultraviolet Light Emitting Diodes. Materials, 12(19), 3119. https://doi.org/10.3390/ma12193119