Synthesis of Intermetallic (Mg1−x,Alx)2Ca by Combinatorial Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Binary Mg–Ca
3.2. Ternary Mg–Ca–Al
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Luo, A.A. Magnesium casting technology for structural applications. J. Magnes. Alloy. 2013, 1, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Song, G.L.; Atrens, A. Corrosion Mechanisms of Magnesium Alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Amberger, D.; Eisenlohr, P.; Göken, M. On the importance of a connected hard-phase skeleton for the creep resistance of Mg alloys. Acta Mater. 2012, 60, 2277–2289. [Google Scholar] [CrossRef]
- Pekguleryuz, M.O.; Baril, E. Creep Resistant Magnesium Diecasting Alloys Based on Alkaline Earth Elements. Mater. Trans. 2001, 42, 1258–1267. [Google Scholar] [CrossRef] [Green Version]
- Amberger, D.; Eisenlohr, P.; Göken, M. Microstructural evolution during creep of Ca-containing AZ91. Mater. Sci. Eng. A 2009, 510, 398–402. [Google Scholar] [CrossRef]
- Ninomiya, R.; Ojiro, T.; Kubota, K. Improved heat resistance of Mg–Al alloys by the Ca addition. Acta Metall. Et. Mater. 1995, 43, 669–674. [Google Scholar] [CrossRef]
- Han, L.; Hu, H.; Northwood, D.O.; Li, N. Microstructure and nano-scale mechanical behavior of Mg–Al and Mg–Al–Ca alloys. Mater. Sci. Eng. A 2008, 473, 16–27. [Google Scholar] [CrossRef]
- Janz, A.; Gröbner, J.; Cao, H.; Zhu, J.; Chang, Y.A.; Schmid-Fetzer, R. Thermodynamic modeling of the Mg–Al–Ca system. Acta Mater. 2009, 57, 682–694. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, C.; Zhu, J.; Cao, G.; Kou, S.; Schmid-Fetzer, R.; Chang, Y.A. Experiments coupled with modeling to establish the Mg-rich phase equilibria of Mg–Al–Ca. Acta Mater. 2008, 56, 5245–5254. [Google Scholar] [CrossRef]
- Amerioun, S.; Simak, S.I.; Häussermann, U. Laves-Phase Structural Changes in the System CaAl2−xMgx. Lnorg. Chem. 2003, 42, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Saddock, N.D.; Jones, J.W.; Pollock, T.M. Structure and transition of eutectic (Mg,Al)2Ca Laves phase in a die-cast Mg–Al–Ca base alloy. Scr. Mater. 2004, 51, 1005–1010. [Google Scholar] [CrossRef]
- Suzuki, A.; Saddock, N.D.; Jones, J.W.; Pollock, T.M. Phase equilibria in the Mg–Al–Ca ternary system at 773 and 673 K. Metall. Mater. Trans. A 2006, 37, 975–983. [Google Scholar] [CrossRef]
- Kevorkov, D.; Medraj, M.; Li, J.; Essadiqi, E.; Chartrand, P. The 400 °C isothermal section of the Mg–Al–Ca system. Intermetallics 2010, 18, 1498–1506. [Google Scholar] [CrossRef]
- Gebhardt, T.; Music, D.; Takahashi, T.; Schneider, J.M. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design. Thin Solid Film. 2012, 520, 5491–5499. [Google Scholar] [CrossRef]
- Wu, Z.; Bai, Y.; Qu, W.; Wu, A.; Zhang, D.; Zhao, J.; Jiang, X. Al–Mg–B thin films prepared by magnetron sputtering. Vacuum 2010, 85, 541–545. [Google Scholar] [CrossRef]
- Frodelius, J.; Eklund, P.; Beckers, M.; Persson, P.O.Å.; Högberg, H.; Hultman, L. Sputter deposition from a Ti2AlC target: Process characterization and conditions for growth of Ti2AlC. Thin Solid Film. 2010, 518, 1621–1626. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 2003, 67, 155108. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Kino, H. Efficient projector expansion for the ab initio LCAO method. Phys. Rev. B 2005, 72, 045121. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113. [Google Scholar] [CrossRef]
- Chibisov, A.N. Oxygen adsorption on small Ti clusters: A first-principles study. Comput. Mater. Sci. 2014, 82, 131–133. [Google Scholar] [CrossRef]
- Koten, M.A.; Manchanda, P.; Balamurugan, B.; Skomski, R.; Sellmyer, D.J.; Shield, J.E. Ferromagnetism in Laves-phase WFe2 nanoparticles. Apl. Mater. 2015, 3, 076101. [Google Scholar] [CrossRef]
- Alcock, C.B.; Itkin, V.P.; Horrigan, M.K. Vapour Pressure Equations for the Metallic Elements: 298–2500 K. Can. Met. Q 1984, 23, 309–313. [Google Scholar] [CrossRef]
- Reckeweg, O.; Lind, C.; Simon, A.; DiSalvo, F.J. Reactions of alkaline earth metals and nitrogen in sealed niobium ampoules: The formation of MgZn2 type intermetallic phases in the presence of nitrogen and the new compound Ba5[NbN4]N. J. Alloy. Compd. 2004, 384, 98–105. [Google Scholar] [CrossRef]
- Stampfl, C.; Scheffler, M. Theory of Alkali-Metal Adsorption on Close-Packed Metal Surfaces. Surf. Rev. Lett. 1995, 2, 317–343. [Google Scholar] [CrossRef]
- Blomqvist, J.; Salo, P. Adsorption of benzene, phenol, propane and carbonic acid molecules on oxidized Al(111) and α-Al2O3(0001) surfaces: A first-principles study. J. Phys. Condens. Matter 2009, 21, 225001. [Google Scholar] [CrossRef] [PubMed]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Ser. A Contain. Pap. Math. Phys. Character 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, J.; Witt, R.A.; Sohn, Y.-h.; Liu, Z.-K. Al2(Mg,Ca) phases in Mg–Al–Ca ternary system: First-principles prediction and experimental identification. Scr. Mater. 2006, 55, 573–576. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keuter, P.; Karimi Aghda, S.; Music, D.; Kümmerl, P.; Schneider, J.M. Synthesis of Intermetallic (Mg1−x,Alx)2Ca by Combinatorial Sputtering. Materials 2019, 12, 3026. https://doi.org/10.3390/ma12183026
Keuter P, Karimi Aghda S, Music D, Kümmerl P, Schneider JM. Synthesis of Intermetallic (Mg1−x,Alx)2Ca by Combinatorial Sputtering. Materials. 2019; 12(18):3026. https://doi.org/10.3390/ma12183026
Chicago/Turabian StyleKeuter, Philipp, Soheil Karimi Aghda, Denis Music, Pauline Kümmerl, and Jochen M. Schneider. 2019. "Synthesis of Intermetallic (Mg1−x,Alx)2Ca by Combinatorial Sputtering" Materials 12, no. 18: 3026. https://doi.org/10.3390/ma12183026
APA StyleKeuter, P., Karimi Aghda, S., Music, D., Kümmerl, P., & Schneider, J. M. (2019). Synthesis of Intermetallic (Mg1−x,Alx)2Ca by Combinatorial Sputtering. Materials, 12(18), 3026. https://doi.org/10.3390/ma12183026