Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Failure Pattern
3.2. Dynamic Tensile Stress-Strain Relationship Curves
3.3. Dynamic Tensile Strength and Young’s Modulus
3.4. Strain Rate Sensitivity of Dynamic Tensile Strength
3.5. Influence Mechanism of Water Content on Tensile Mechanical Properties
3.5.1. Volume Deformation of C–S–H
3.5.2. Influence Mechanism of Water Molecules
3.6. Dynamic Tensile Constitutive Relationship
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suaris, W.; Shah, S.P. Constitutive model for dynamic loading of concrete. J. Struct. Eng. 1984, 111, 563–576. [Google Scholar] [CrossRef]
- Fu, H.C.; Erki, M.A.; Seckin, M. Review of effects of loading rate on reinforced concrete. J. Struct. Eng. 1991, 117, 3660–3679. [Google Scholar] [CrossRef]
- Malvar, L.J.; Ross, C.A. Review of strain rate effects for concrete in tension. Materials 1998, 95, 735–739. [Google Scholar] [CrossRef]
- Bicanic, N.; Zienkiewicz, O.C. Constitutive model for concrete under dynamic loading. Earthq. Eng. Struct. 1983, 11, 689–710. [Google Scholar] [CrossRef]
- Yan, D.; Lin, G. Dynamic properties of concrete in direct tension. Cem. Concr. Res. 2006, 36, 1371–1378. [Google Scholar] [CrossRef]
- Zhou, J.K.; Chen, X.D. Stress-strain behavior and statistical continuous damage model of cement mortar under high strain rates. J. Mater. Civ. Eng. 2013, 25, 120–130. [Google Scholar] [CrossRef]
- Wang, X. Review on the Mechanism and Model of Moisture Transfer in Concrete. J. Build. Mater. 2002, 5, 67–71. [Google Scholar] [CrossRef]
- Rossi, P.; Mier, J.G.M.V.; Boulay, C.; Maou, F.L. The dynamic behaviour of concrete: influence of free water. Mater. Struct. 1992, 25, 509–514. [Google Scholar] [CrossRef]
- Reinhardt, H.W.; Ross, P.; Mier, J.G.M.V. Joint investigation of concrete at high rates of loading. Mater. Struct. 1990, 23, 213–216. [Google Scholar] [CrossRef]
- Cadoni, E.; Labibes, K.; Albertini, C.; Berra, M.; Giangrasso, M. Strain-rate effect on the tensile behavior of concrete at different relative humidity levels. Mater. Struct. 2005, 34, 21–26. [Google Scholar] [CrossRef]
- Ross, C.A.; Jerome, D.M.; Tedesco, J.W.; Hughes, M.L. Moisture and strain rate effects on concrete strength. Materials 1996, 93, 293–300. [Google Scholar] [CrossRef]
- Zhou, J.K.; Chen, X.D.; Wu, L.Q.; Kan, X.W. Influence of free water content on the compressive mechanical behavior of cement mortar under high strain rate. Sadhana 2011, 36, 357–369. [Google Scholar] [CrossRef]
- Wu, S.X.; Chen, X.D.; Zhou, J.K. Influence of strain rate and water content on mechanical behavior of dam concrete. Constr. Build. Mater. 2012, 36, 448–457. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Song, Y.U.; Wang, J.Z. Influence of free water on dynamic behavior of dam concrete under biaxial compression. Constr. Build. Mater. 2016, 112, 222–231. [Google Scholar] [CrossRef]
- Qomi, M.J.A.; Krakowiak, K.J.; Bauchy, M. Combinatorial molecular optimization of cement hydrates. Nat. Commun. 2014, 5, 4960–5960. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.D.; Alostaz, A.; Cheng, A.H.D.; Song, C.R. Concrete as a hierarchical structural composite material. Int. J. Multiscale Comput. Eng. 2010, 8, 585–595. [Google Scholar] [CrossRef]
- Lin, F.; Christian, M. Micromechanics model for the effective elastic properties of hardened cement pastes. Acta Mater. Compos.Sin. 2007, 24, 184–189. [Google Scholar]
- Haecker, C.J.; Garboczi, E.J.; Bullard, J.W.; Bohn, R.B.; Sun, Z.H.; Shah, S.P.; Voigt, T. Modeling the linear elastic properties of Portland cement paste. Cem. Concr. Res. 2005, 35, 1948–1960. [Google Scholar] [CrossRef]
- Moon, J.; Yoon, S.; Monteiro, P.J.M. Mechanical properties of jennite: A theoretical and experimental study. Cem. Concr. Res. 2015, 71, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Makar, J.M.; Chan, G.W. Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310. [Google Scholar] [CrossRef]
- Richardson, I.G. Tobermorite/jennite and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate,β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cem. Concr. Res. 2004, 34, 1733–1777. [Google Scholar] [CrossRef]
- Pourbeik, P.; Beaudoin, J.J.; Alizadeh, R.; Raki, L. Dynamic mechanical thermoanalysis of layered calcium silicate hydrates. J. Therm. Anal. Calorim. 2004, 118, 1–14. [Google Scholar] [CrossRef]
- Allen, A.J.; Thomas, J.J.; Jennings, H.M. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater. 2007, 6, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Pellenq, R.J.M.; Kushima, A.; Shahsavari, R.; Van Vliet, K.J.; Buehler, M.J.; Yip, S.; Ulm, F.J. A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. USA 2009, 106, 16102–16107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.K.; Huang, J.K.; Jin, L. Nano–micro modelling of mechanical properties of cement paste based on molecular dynamics. Adv Cem Res. 2016, 28, 73–83. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, C.; Fu, J. Dynamic mechanical behaviors of calcium silicate hydrate under shock compression loading using molecular dynamics simulation. J. Non-Cryst. Solids. 2018, 500, 482–486. [Google Scholar] [CrossRef]
- Li, Z. Advanced Concrete Technology; Hoboken John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kalinichev, A.G.; Wang, J.W.; Kirkpatrick, R.J. Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials. Cem. Concr. Res. 2007, 37, 337–347. [Google Scholar] [CrossRef]
- Youssef, M.; Pellenq, R.J.M.; Yildiz, B. Glassy nature of water in an ultraconfining disordered material: The case of calcium−silicate−hydrate. J. Am. Chem. Soc. 2011, 133, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- Bonnaud, P.A.; Ji, Q.; Coasne, B.; Pellenq, R.J.M.; Vliet, K.J.V. Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir 2012, 28, 11422–11432. [Google Scholar] [CrossRef]
- Ji, Q.; Pellenq, R.J.M.; Vliet, K.J.V. Comparison of computational water models for simulation of calcium-silicate-hydrate. Comp Mater Sci. 2012, 53, 234–240. [Google Scholar] [CrossRef]
- Hou, D.S.; Zhu, Y.; Lu, Y.Y.; Li, Z.J. Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: A molecular dynamics study. Mater. Chem. Phys. 2014, 146, 503–511. [Google Scholar] [CrossRef]
- Hou, D.S.; Ma, H.Y.; Zhu, Y.; Li, Z.J. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Mater. 2014, 67, 81–94. [Google Scholar] [CrossRef]
- Shackelford, F. Introduction to Materials Science for Engineers, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Chen, J.; Thomas, J.J.; Taylor, H.; Jennings, H.M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.C.A.; Scrivener, K.L.; Gajewicz, A.M.; McDonaldb, P.J. Use of bench-top NMR to measure the density, composition and desorption isotherm of C–S–H in cement paste. Microporous Mesoporous Mater. 2013, 178, 99–103. [Google Scholar] [CrossRef]
- Puibasset, J.; Pellenq, R.J.M. Water adsorption on hydrophilic mesoporous and plane silica substrates: A grand canonical Monte Carlo simulation study. J. Chem. Phys. 2003, 118, 5613–5622. [Google Scholar] [CrossRef]
- Limpton, S.P. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Shahsavari, R.; Pellenq, R.J.M.; Ulm, F. Empirical force fields for complex hydrated calcio-silicate layered materials. Phys. Chem. Chem. Phys. 2011, 13, 1002–1011. [Google Scholar] [CrossRef]
- Catlow, C.R.A.; Thomas, J.M.; Parker, S.C.; Jefferson, D.A. Simulating silicate structures and the structural chemistry of pyroxenoids. Nature 1982, 295, 658–662. [Google Scholar] [CrossRef]
- Hou, D.S.; Li, Z.J. Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite. Microporous Mesoporous Mater. 2014, 195, 9–20. [Google Scholar] [CrossRef]
- Hou, D.S.; Li, D.K.; Yu, J.; Zhang, P. Insights on capillary adsorption of aqueous sodium chloride solution in the nanometer calcium silicate channel: A molecular dynamics study. J. Phys. Chem. C 2017, 121, 13786–13797. [Google Scholar] [CrossRef]
- Hou, D.S.; Lu, C.; Zhao, T.J.; Zhang, P.; Ding, Q.J. Structural, dynamic and mechanical evolution of water confined in the nanopores of disordered calcium silicate sheets. Microfluid. Nanofluid. 2015, 19, 1309–1323. [Google Scholar] [CrossRef]
- Hou, D.S.; Zhang, J.R.; Li, Z.J.; Zhu, Y. Uniaxial tension study of calcium silicate hydrate (C–S–H): structure, dynamics and mechanical properties. Mater. Struct. 2015, 48, 3811–3824. [Google Scholar] [CrossRef]
- Girifalco, L.A.; Weizer, V.G. Application of the morse potential function to cubic metals. Phys Rev. 1959, 114, 687–690. [Google Scholar] [CrossRef]
Strain Rate(ps−1) | Degree of Saturation | |||||||
---|---|---|---|---|---|---|---|---|
0% | 7.59% | 14.17% | 20.38% | 39.62% | 61.07% | 79.51% | 100% | |
0.0008 | 2.03 | 1.89 | 2.01 | 1.79 | 1.73 | 1.65 | 1.33 | 1.27 |
0.008 | 2.41 | 2.36 | 2.42 | 2.02 | 2.01 | 1.97 | 1.56 | 1.38 |
0.08 | 3.20 | 3.16 | 3.15 | 2.65 | 2.56 | 2.59 | 2.14 | 1.97 |
0.8 | 5.57 | 5.47 | 5.14 | 4.51 | 4.36 | 4.12 | 4.11 | 3.79 |
Strain Rate(ps−1) | Degree of Saturation | |||||||
---|---|---|---|---|---|---|---|---|
0% | 7.59% | 14.17% | 20.38% | 39.62% | 61.07% | 79.51% | 100% | |
0.0008 | 40.11 | 38.33 | 37.10 | 36.10 | 32.02 | 28.17 | 26.14 | 20.01 |
0.008 | 42.05 | 41.01 | 38.52 | 38.12 | 35.06 | 33.16 | 31.20 | 26.23 |
0.08 | 54.08 | 52.12 | 51.05 | 50.04 | 47.09 | 46.02 | 44.13 | 41.08 |
0.8 | 72.16 | 70.08 | 68.22 | 67.04 | 66.14 | 64.11 | 61.18 | 58.03 |
Degree of Saturation | ||||||||
---|---|---|---|---|---|---|---|---|
0% | 7.59% | 14.17% | 20.38% | 39.62% | 61.07% | 79.51% | 100% | |
/nm | 0 | 0.070 | 0.197 | 0.299 | 0.496 | 0.589 | 0.724 | 0.85 |
Degree of Saturation/Fitted Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
0% | 5.42 | 4.44 | 0.154 | 5.42 | 4.44 | 0.154 | 0 | 5.79 | 0.128 |
7.59% | 5.28 | 4.80 | 0.145 | 3.90 | 4.44 | 0.154 | 1.38 | 4.60 | 0.147 |
14.17% | 5.05 | 4.52 | 0.151 | 3.22 | 4.44 | 0.154 | 1.82 | 3.07 | 0.190 |
20.38% | 4.51 | 3.77 | 0.169 | 2.29 | 4.44 | 0.154 | 2.21 | 3.559 | 0.179 |
39.62% | 4.36 | 3.93 | 0.167 | 1.75 | 4.44 | 0.154 | 2.60 | 3.78 | 0.167 |
61.07% | 4.12 | 4.11 | 0.162 | 1.40 | 4.44 | 0.154 | 2.72 | 4.1 | 0.132 |
79.51% | 4.11 | 4.74 | 0.140 | 0.996 | 4.44 | 0.154 | 3.24 | 4.5 | 0.130 |
100% | 3.97 | 4.73 | 0.134 | 0.675 | 4.44 | 0.154 | 3.13 | 5.79 | 0.128 |
Strain Rate /ps−1 | ||
---|---|---|
0.8 | 5.24 | 0.0035 |
0.08 | 3.20 | 0.0047 |
0.008 | 2.47 | 0.0056 |
0.0008 | 2.03 | 0.0050 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Liang, Y. Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation. Materials 2019, 12, 2837. https://doi.org/10.3390/ma12172837
Zhou J, Liang Y. Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation. Materials. 2019; 12(17):2837. https://doi.org/10.3390/ma12172837
Chicago/Turabian StyleZhou, Jikai, and Yuanzhi Liang. 2019. "Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation" Materials 12, no. 17: 2837. https://doi.org/10.3390/ma12172837
APA StyleZhou, J., & Liang, Y. (2019). Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation. Materials, 12(17), 2837. https://doi.org/10.3390/ma12172837