3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure
Abstract
:1. Introduction
2. Materials and Parameters
2.1. Preparation of Wood-Metal Functional Composites
2.2. Thermal Parameters
3. 3D Microthermal Model
3.1. Solution of Boundary Conditions
3.1.1. Heat Q1 Entering the System
3.1.2. Increase in Material Energy Q3
3.2. Model Development
3.3. Experimental Verification
- (1)
- When setting the cell wall thermal conductivity, we assume that the cell wall is composed entirely of cellulose. Although the cellulose content is highest in the wood cell wall, the cell wall is not completely cellulose. Moreover, the thermal conductivity of cellulose is higher than that of hemicellulose and lignin. Therefore, at the level of the wood cell wall, the temperature increases faster in the model than in the experiments.
- (2)
- The model assumes that each cell lumen is filled with metal alloy; however, this is not necessarily true in the experiment. Therefore, at the level of the wood-metal functional composites, the temperature increases faster in the model than in the experiments.
4. Computational Experiments
4.1. Influence of Cell Geometry on Thermal Properties
4.2. Influence of Heat Transfer Direction on Thermal Properties
4.3. Influence of Applied Temperature on Thermal Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tsai, S.W.; Hahn, T.H. Introduction to composite materials. J. Adhes. Sci. Technol. 2000, 72, 387–388. [Google Scholar] [CrossRef]
- Seo, J.; Jeon, J.; Lee, J.-H.; Kim, S. Thermal performance analysis according to wood flooring structure for energy conservation in radiant floor heating systems. Energ. Buildings 2011, 43, 2039–2042. [Google Scholar] [CrossRef]
- Li, J.; Gao, L.K. Bacteriostatic wood based silver titanium composite films with light controlled wettability conversion. J. For. Environ. 2015, 35, 193–198. [Google Scholar]
- Keplinger, T.; Cabane, E.; Chanana, M.; Hass, P.; Merk, V.; Gierlinger, N.; Burgert, I. A versatile strategy for grafting polymers to wood cell walls. Acta Biomater. 2015, 11, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Klimowicz, T.F. The large-scale commercialization of aluminum-matrix composites. JOM 1994, 46, 49–53. [Google Scholar] [CrossRef]
- Lucchetta, G.; Marinello, F.; Bariani, P.F. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding. Cirp. Ann-Manuf. Techn. 2011, 60, 559–562. [Google Scholar] [CrossRef]
- Park, K.S.; Lee, H.H.; Kang, S.G. Physico-mechanical properties and optimum manufacturing conditions of Bi-Sn metal alloy impregnated wood composites. J. Korean Wood. Sci. Technol. 2014, 42, 691–699. [Google Scholar] [CrossRef]
- Wan, J.Y.; Song, J.W.; Yang, Z.; Kirsch, D.; Jia, C.; Xu, R.; Yang, B.; Hu, L.B. Highly anisotropic conductors. Adv. Mater. 2017, 29, 1703331. [Google Scholar] [CrossRef]
- Pak, S.Y.; Kim, H.M.; Kim, S.Y.; Youn, J.R. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi–walled carbon nanotube fillers. Carbon 2012, 50, 4830–4838. [Google Scholar] [CrossRef]
- Han, Y.W.; Lv, S.; Hao, C.X.; Ding, F.; Zhang, Y. Thermal conductivity enhancement of BN/silicone composites cured under electric field: Stacking of shape, thermal conductivity, and particle packing structure anisotropies. Thermochim. Acta 2012, 529, 68–73. [Google Scholar] [CrossRef]
- Ansell, M.P. Wood: A 45th anniversary review of JMS papers. J. Mater. Sci. 2012, 47, 583–598. [Google Scholar] [CrossRef]
- Eitelberger, J.; Hofstetter, K. Prediction of transport properties of wood below the fiber saturation point—A multiscale homogenization approach and its experimental validation—Part I: Thermal conductivity. Compos. Sci. Technol. 2011, 71, 134–144. [Google Scholar] [CrossRef]
- Eitelberger, J.; Hofstetter, K. Prediction of transport properties of wood below the fiber saturation point—A multiscale homogenization approach and its experimental validation—Part II: Seady state moisture diffusion coefficient. Compos. Sci. Technol. 2011, 71, 145–151. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cheng, Z.; Xu, Z.L.; Zhang, L.; Wang, X.W. Thermophysical Properties of Lignocellulose: A Cell-Scale Study Down to 41K. PLoS ONE 2014, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Thoemen, H.; Walther, T.; Wiegmann, A. 3D simulation of macroscopic heat and mass transfer properties from the microstructure of wood fibre networks. Compos. Sci. Technol. 2008, 68, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.D. Finite Element Modeling of Wood Microstructure and Calculation of Mechanical Thermal Properties. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2011. [Google Scholar] [CrossRef]
- Xu, D.L.; Zhang, Y.; Zhou, H.D.; Meng, Y.J.; Wang, S.Q. Characterization of adhesive penetration in wood bond by means of scanning thermal microscopy (SThM). Holzforschung 2016, 70, 323–330. [Google Scholar] [CrossRef]
- Koponen, S.; Toratti, T.; Kanerva, P. Modelling longitudinal elastic an shrinkage properties of wood. Wood Sci. Technol. 1989, 23, 55–63. [Google Scholar] [CrossRef]
- Koponen, S.; Toratti, T.; Kanerva, P. Modelling elastic and shrinkage properties of wood based on cell structure. Wood Sci. Technol. 1991, 25, 25–32. [Google Scholar] [CrossRef]
- Kahle, E.; Woodhouse, J. The influence of cell geometry on the elasticity of softwood. J. Mater. Sci. 1994, 29, 1250–1259. [Google Scholar] [CrossRef]
- Qing, H.; Mishnaevsky, L. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech. Mater. 2009, 41, 1034–1049. [Google Scholar] [CrossRef]
- Qing, H.; Mishnaevsky, L. Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comp. Mater. Sci. 2009, 46, 310–320. [Google Scholar] [CrossRef]
- Fortino, S.; Hradil, P.; Salminen, L.I.; De Magistris, F. A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading. J. Mater. Sci. 2015, 50, 482–492. [Google Scholar] [CrossRef]
- Fortino, S.; Rinta-Paavola, A.; Pečenko, R.; Hozjan, T.; Paajanen, A.; Vaari, J.; Hostikka, S. A numerical and experimental methodology to investigate morphological changes in wood exposed to fire temperatures. In Proceedings of the CompWood 2019 Conference, Linnaeus University, Växjö, Sweden, 17–19 June; p. 20, ISBN 978-91-88898-64-7.
- Muzamal, M.; Gamstedt, E.K.; Rasmuson, A. Modeling wood fiber deformation caused by vapour expansion during steam explosion of wood. Wood Sci. Technol. 2014, 48, 353–372. [Google Scholar] [CrossRef]
- Muzamal, M.; Rasmuson, A. Dynamic simulation of disintegration of wood chips caused by impact and collisions during the steam explosion pretreatment. Wood Sci. Technol. 2016, 51, 115–131. [Google Scholar] [CrossRef]
- Sfarra, S.; Theodorakeas, P.; Cernecký, J.; Pivarciova, E.; Perilli, S.; Koui, M. Inspecting marquetries at different wavelengths: The preliminary numerical approach as aid for a wide-range of non-destructive tests. J. Nondestruct. Eval. 2017, 36, 6. [Google Scholar] [CrossRef]
- Zhang, H.; Sfarra, S.; Sarasini, F.; Fiorelli, J.; Peeters, J.; Avdelidis, N.P.; de Lucca Sartori, D.; Ibarra-Castanedo, C.; Perilli, S.; Mokhtari, Y.; et al. Impact modelling and a posteriori non-destructive evaluation of homogeneous ppaperboards of sugarcane bagasse. J. Nondestruct. Eval. 2018, 37, 6. [Google Scholar] [CrossRef]
- Wang, L.C. Establishment of Digital Analog System for Coniferous Wood Structure and Application in Heat Conduction Research. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2006. [Google Scholar]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Aseeva, R.M.; Boris, S.; Andrey, S. Fire Behavior and Fire Protection in Timber Buildings; Springer: Berlin, Germany, 2014. [Google Scholar]
- De Magistris, F.; Salme´n, L. Finite element modelling of wood cell deformation transverse to the fibre axis. Nord. Pulp. Pap. Res. J. 2008, 23, 240–246. [Google Scholar] [CrossRef]
- Abaqus 6.14 Documentation. Available online: http://wufengyun.com:888 (accessed on 13 July 2019).
- Lin, M.; Rao, J.P.; Xie, Y.Q.; Yang, Q.X.; Liao, Y.Q. Heat transfer in anisotropic wood. J. Fujian Agric. For. Univ. 2014, 43, 657–660. [Google Scholar] [CrossRef]
Density (kg·m−3) | Thermal Conductivity (W·m−1·K−1) | Specific Heat (J·Kg−1·K−1) | ||
---|---|---|---|---|
Wood cell wall | 1460 [30] | 1 (||) [12] | 0.26 () [12] | 1600 [32] |
Alloy | 7100 | 10 | 210 |
θ (°) | T (μm) | R (μm) | S (μm2) |
---|---|---|---|
30 | 10 | 606 | |
12 | 748 | ||
30 | 15 | 974 | |
20 | 1386 | ||
30 | 2338 | ||
0 | T = R = 30 μm | 900 | |
10 | 2080 | ||
20 | 2270 | ||
30 | 2338 | ||
40 | 2265 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Liang, S.; Zhou, Y.; Lin, L.; Fu, F. 3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure. Materials 2019, 12, 2709. https://doi.org/10.3390/ma12172709
Chai Y, Liang S, Zhou Y, Lin L, Fu F. 3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure. Materials. 2019; 12(17):2709. https://doi.org/10.3390/ma12172709
Chicago/Turabian StyleChai, Yuan, Shanqing Liang, Yongdong Zhou, Lanying Lin, and Feng Fu. 2019. "3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure" Materials 12, no. 17: 2709. https://doi.org/10.3390/ma12172709
APA StyleChai, Y., Liang, S., Zhou, Y., Lin, L., & Fu, F. (2019). 3D Microscale Heat Transfer Model of the Thermal Properties of Wood-Metal Functional Composites Based on the Microstructure. Materials, 12(17), 2709. https://doi.org/10.3390/ma12172709