Wideband RCS Reduction Using Coding Diffusion Metasurface
Abstract
1. Introduction
2. Unit Cell Design
3. Simulation and Analysis of Coding Metasurface
4. Fabrication and Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fante, R.; McCormack, M. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 1988, 36, 1443–1454. [Google Scholar] [CrossRef]
- Lee, K.C.; Huang, C.-W.; Fang, M.-C. Radar target recognition by projected features of frequency-diversity Radar Cross Section. Prog. Electromagn. Res. 2008, 81, 121–133. [Google Scholar] [CrossRef]
- Li, N.-J.; Hu, C.-F.; Zhang, L.-X.; Xu, J.-D. Overview of RCS extrapolation techniques to aircraft targets. Prog. Electromagn. Res. B 2008, 9, 249–262. [Google Scholar] [CrossRef]
- Knott, E.F.; Shaefer, J.F.; Tuley, M.T. Radar Cross Section, 2nd ed.; Artech House: Norwood, MA, USA, 1993; pp. 269–276. [Google Scholar]
- Oraizi, H.; Abdolali, A. Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials. Propagation of Electromagnetic Research. Prog. Electromagn. Res. B 2008, 3, 227–253. [Google Scholar]
- Galarregui, J.C.I.; Pereda, A.T.; De Falcon, J.L.M.; Ederra, I.; Gonzalo, R.; De Maagt, P. Broadband Radar Cross-Section Reduction Using AMC Technology. IEEE Trans. Antennas Propag. 2013, 61, 6136–6143. [Google Scholar] [CrossRef]
- Edalati, A.; Sarabandi, K. Wideband, wide-angle, polarization independent RCS reduction using non-absorptive miniaturized-element frequency selective surfaces. IEEE Trans. Antennas Propag. 2014, 62, 747–754. [Google Scholar] [CrossRef]
- Chen, W.; Balanis, C.A.; Birtcher, C.R. Checkerboard EBG Surfaces for Wideband Radar Cross Section Reduction. IEEE Trans. Antennas Propag. 2015, 63, 1. [Google Scholar] [CrossRef]
- Esmaeli, S.; Sedighy, S. Wideband radar cross-section reduction by AMC. Electron. Lett. 2016, 52, 70–71. [Google Scholar] [CrossRef]
- Paquay, M.; Iriarte, J.-C.; Ederra, I.; Gonzalo, R.; De Maagt, P. Thin AMC Structure for Radar Cross-Section Reduction. IEEE Trans. Antennas Propag. 2007, 55, 3630–3638. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, Y.; Gao, J. Broadband radar absorbing material based on the orthogonal arrangement of CSRR etched artificial magnetic conductor. Microw. Opt. Technol. Lett. 2014, 56, 158–161. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Hong, T.; Dong, H.; Wang, J.; Ning, H.; Wei, Y.; Mao, L. A novel combinatorial triangle-type AMC structure for RCS reduction. Microw. Opt. Technol. Lett. 2015, 57, 2728–2732. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, Q.; Zhao, J.; Dong, D.S.; Cui, T.-J. Reduction of Radar Cross Section Based on a Metasurface. Propagation of Electromagnetic Research. Prog. Electromagn. Res. 2014, 146, 71–76. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, J.; Cheng, Q.; Dong, D.S.; Cui, T.J. Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.S.; Yang, J.; Cheng, Q.; Zhao, J.; Gao, L.H.; Ma, S.J.; Liu, S.; Bin Chen, H.; He, Q.; Liu, W.W.; et al. Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions. Adv. Opt. Mater. 2015, 3, 1405–1410. [Google Scholar] [CrossRef]
- Gao, L.-H.; Cheng, Q.; Yang, J.; Ma, S.-J.; Zhao, J.; Liu, S.; Chen, H.-B.; He, Q.; Jiang, W.-X.; Ma, H.-F.; et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light. Sci. Appl. 2015, 4, e324. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Xu, Q.; Bao, D.; Du, L.; Wan, X.; Tang, W.X.; Ouyang, C.; Zhou, X.Y.; Yuan, H.; et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light. Sci. Appl. 2016, 5, e16076. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, X.; Gao, J.; Sun, Y.; Yang, H.; Liu, X.; Zhou, Y.; Han, T.; Chen, W. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm. Sci. Rep. 2016, 6, 23896. [Google Scholar] [CrossRef]
- Turpin, J.P.; Sieber, P.E.; Werner, D.H. Absorbing Ground Planes for Reducing Planar Antenna Radar Cross-Section Based on Frequency Selective Surfaces. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1456–1459. [Google Scholar] [CrossRef]
- Zhuang, Y.-Q.; Wang, G.-M.; Xu, H.-X. Ultra-wideband RCS reduction using novel configured chessboard metasurface. Chin. Phys. B 2017, 26, 54101. [Google Scholar] [CrossRef]
- Liu, X.; Gao, J.; Xu, L.; Cao, X.; Zhao, Y.; Li, S. A Coding diffuse metasurface for RCS Reduction. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 724–727. [Google Scholar] [CrossRef]
- Pors, A.; Ding, F.; Chen, Y.; Radko, I.P.; Bozhevolnyi, S.I. Random-phase metasurfaces at optical wavelengths. Sci. Rep. 2016, 6, 28448. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Cheng, Y.Z.; Ge, C.C.; Gong, R.Z. Broadband Polarization Conversion Metasurface Based on Metal Cut-Wire Structure for Radar Cross Section Reduction. Materials 2018, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Bozhevolnyi, S.I.; Ding, F.; Pors, A. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2017, 81, 026401. [Google Scholar]
- Li, T.; Chen, K.; Ding, G.; Zhao, J.; Jiang, T.; Feng, Y. Optically transparent metasurface Salisbury screen with wideband microwave absorption. Opt. Express 2018, 26, 34384–34395. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, J.; Shen, L.; Sui, S.; Pang, Y.; Wang, J.; Ma, H.; Qo, S. Transparent and broadband absorption diffusion-integrated low-scattering metamaterial by the standing-up lattice. Opt. Express 2018, 26, 28363–28375. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; He, H.; Lu, Y.; Yin, H.; Liu, G.; Li, Z. Ultrawideband Radar Cross-Section Reduction by a Metasurface Based on Defect Lattices and Multiwave Destructive Interference. Phys. Rev. Appl. 2019, 11, 044088. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Su, J.; Li, Z.; Liu, J.; Yang, Y. (Lamar) Coding diffusion metasurface for ultra-wideband RCS reduction. Electron. Lett. 2017, 53, 187–189. [Google Scholar] [CrossRef]
- Sun, H.; Gu, C.; Chen, X.; Li, Z.; Liu, L.; Xu, B.; Zhou, Z. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction. Sci. Rep. 2017, 7, 40782. [Google Scholar] [CrossRef] [PubMed]
Similar Work | Size of Metasurface (mm3) | Frequency Range (<−10 dB) | Bandwidth (%) | Optimization Technique |
---|---|---|---|---|
[9] | 180 × 180 × 3.5 | 9.4–23.28 | 85 | Chessboard Metasurface |
[12] | 280 × 280 × 1.694 | 7–16 | 63 | Coding and Digital Metamaterial |
[15] | 192 × 180 × 4 | 6–14 | 80 | PSO Algorithm |
[22] | 328 × 328 × 3 | 5.4–7.4 | 67 | Ergodic Algorithm |
[24] | 400 × 400 × 3.5 | 6–14 | 80 | 01/10 coding metasurface |
This work | 264 × 264 × 3 | 8.6–22.5 | 92 | Random optimization Algorithm |
Technique | Size (mm3) | Bandwidth | Scattering Field Lobes (Dispersion of Incident Wave) | Monostatic RCS Reduction | Bistatic RCS Reduction at j = 0°/40° (15.4 GHz) | Operating Band |
---|---|---|---|---|---|---|
Designed metasurface | 264 × 264 × 3 | 92% | Eight lobes | 9 | 25 and 26 dB | 8.6–22.5 GHz |
Chessboard metasurface | 264 × 264 × 3 | 60% | Four Lobes | 7.5 | 19 and 18 dB | 13.8–22.5 GHz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, L.; Li, Q.; Ali Khan, T.; Yi, J.; Chen, X. Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials 2019, 12, 2708. https://doi.org/10.3390/ma12172708
Ali L, Li Q, Ali Khan T, Yi J, Chen X. Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials. 2019; 12(17):2708. https://doi.org/10.3390/ma12172708
Chicago/Turabian StyleAli, Luqman, Qinlong Li, Tayyab Ali Khan, Jianjia Yi, and Xiaoming Chen. 2019. "Wideband RCS Reduction Using Coding Diffusion Metasurface" Materials 12, no. 17: 2708. https://doi.org/10.3390/ma12172708
APA StyleAli, L., Li, Q., Ali Khan, T., Yi, J., & Chen, X. (2019). Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials, 12(17), 2708. https://doi.org/10.3390/ma12172708