Effect of MgO Addition on the Mechanical and Dynamic Properties of Zirconia Toughened Alumina (ZTA) Ceramics
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials and Sample Fabrication
2.2. Characterisation
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, L.; Li, X.; Qiu, G.; Ma, W.; Sun, Y.; Yu, H. Study on Toughness Mechanism of Ceramic Cutting Tools. J. Rare Earths 2007, 25, 309–316. [Google Scholar]
- Senthil Kumar, A.; Raja Durai, A.; Sornakumar, T. Development of yttria and ceria toughened alumina composite for cutting tool application. Int. J. Refract. Met. Hard Mater. 2007, 25, 214–219. [Google Scholar] [CrossRef]
- Azhar, A.Z.A.; Choong, L.C.; Mohamed, H.; Ratnam, M.M.; Ahmad, Z.A. Effects of Cr2O3 addition on the mechanical properties, microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts. J. Alloys Compd. 2012, 513, 91–96. [Google Scholar] [CrossRef]
- Azhar, A.Z.A.; Ratnam, M.M.; Ahmad, Z.A. Effect of Al2O3/YSZ microstructures on wear and mechanical properties of cutting inserts. J. Alloys Compd. 2009, 478, 608–614. [Google Scholar] [CrossRef]
- Bateni, N.H.; Hamidon, M.N.; Matori, K.A.; Arab, A. P–E hysteresis loop evaluation and dielectric studies of ceramic obtained from white rice husk ash for electronic applications. J. Mater. Sci. Mater. Electron. 2015, 26, 6157–6162. [Google Scholar] [CrossRef]
- Matchen, B. Applications of Ceramics in Armor Products. Key Eng. Mater. 1996, 122, 333–344. [Google Scholar] [CrossRef]
- Lankford, J. The role of dynamic material properties in the performance of ceramic armor. Int. J. Appl. Ceram. Technol. 2004, 1, 205–210. [Google Scholar] [CrossRef]
- Gooch, W.A. An overview of ceramic armor applications. Ceram. Trans. 2002, 134, 3–21. [Google Scholar]
- Azarafza, R.; Arab, A.; Mehdipoor, A. Impact behavior of ceramic-metal armour composed of Al2O3-nano SiC composite. Int. J. Adv. Des. Manuf. Technol. 2012, 5, 83–87. [Google Scholar]
- Bartolomé, J.F.; Smirnov, A.; Kurland, H.; Grabow, J.; Müller, F.A. New ZrO2/Al2O3 Nanocomposite Fabricated from Hybrid Nanoparticles Prepared by CO2 Laser Co-Vaporization. Sci. Rep. 2016, 6, 20589. [Google Scholar] [CrossRef]
- Sommer, F.; Landfried, R.; Kern, F.; Gadow, R. Mechanical properties of zirconia toughened alumina with 10–24 vol.% 1.5 mol% Y-TZP reinforcement. J. Eur. Ceram. Soc. 2012, 32, 3905–3910. [Google Scholar] [CrossRef]
- Sktani, Z.D.I.; Rejab, N.A.; Ratnam, M.M.; Ahmad, Z.A. Fabrication of tougher ZTA ceramics with sustainable high hardness through ( RSM ) optimisation. Int. J. Refract. Met. Hard Mater. 2018, 74, 78–86. [Google Scholar] [CrossRef]
- Karandikar, P.; Evans, G. A review of ceramics for armor applications. Ceram. Eng. Sci. Proc. 2009, 29, 163–175. [Google Scholar]
- Hallam, D.; Heaton, A.; James, B.; Smith, P.; Yeomans, J. The correlation of indentation behaviour with ballistic performance for spark plasma sintered armour ceramics. J. Eur. Ceram. Soc. 2015, 35, 2243–2252. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, M.; Cutler, R. Microstructure, mechanical properties, and performance of magnesium aluminum boride (MgAlB14). Ceram. Eng. Sci. Proc. 2010, 31, 239–250. [Google Scholar]
- Hayun, S.; Paris, V.; Dariel, M. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering. J. Eur. Ceram. Soc. 2009, 29, 3395–3400. [Google Scholar] [CrossRef]
- Lankford, J. The effect of hydrostatic pressure and loading rate on compressive failure of fiber-reinforced ceramic-matrix composites. Compos. Sci. Technol. 1994, 51, 537–543. [Google Scholar] [CrossRef]
- Lankford, J. Temperature-strain rate dependance of compressive strength and damage mechanisms in aluminium oxide. J. Mater. Sci. 1981, 16, 1567–1578. [Google Scholar] [CrossRef]
- Lankford, J. Mechanisms Responsible for Strain-Rate-Dependent Compressive Strength in Ceramic Materials. J. Am. Ceram. Soc. 1981, 64, C33–C34. [Google Scholar] [CrossRef]
- Stoia, D.I.; Linul, E.; Marsavina, L. Influence of manufacturing parameters on mechanical properties of porous materials by selective laser sintering. Materials 2019, 16, 871. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ahn, J.; Lee, J.; Kim, J.H. Dynamic Modulus of Porous Asphalt and the Effect of Moisture Conditioning. Materials 2019, 12, 1230. [Google Scholar] [CrossRef]
- Razavi, S.M.J.; Bordonaro, G.G.; Ferro, P.; Torgersen, J.; Berto, F. Fatigue behavior of porous Ti-6Al-4V made by laser-engineered net shaping. Materials 2018, 11, 284. [Google Scholar] [CrossRef]
- Marsavina, L.; Linul, E.; Voiconi, T.; Sadowski, T. A comparison between dynamic and static fracture toughness of polyurethane foams. Polym. Test. 2013, 32, 673–680. [Google Scholar] [CrossRef]
- Luo, H.; Chen, W. Dynamic compressive response of intact and damaged AD995 alumina. Int. J. Appl. Ceram. Technol. 2004, 1, 254–260. [Google Scholar] [CrossRef]
- Luo, H.; Chen, W.W.; Rajendran, A.M. Dynamic Compressive Response of Damaged and Interlocked SiC–N Ceramics. J. Am. Ceram. Soc. 2006, 89, 266–273. [Google Scholar] [CrossRef]
- Hu, G.; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W. Dynamic multiaxial response of a hot-pressed aluminum nitride. Scr. Mater. 2012, 66, 527–530. [Google Scholar] [CrossRef]
- Hu, G.; Ramesh, K.T.; Cao, B.; McCauley, J.W. The compressive failure of aluminum nitride considered as a model advanced ceramic. J. Mech. Phys. Solids 2011, 59, 1076–1093. [Google Scholar] [CrossRef]
- Hu, G.; Chen, C.Q.Q.; Ramesh, K.T.T.; McCauley, J.W.W. Mechanisms of Dynamic Deformation and Dynamic Failure in Aluminum Nitride. Acta Mater. 2012, 60, 3480–3490. [Google Scholar] [CrossRef]
- Caccia, M.; Xiang, C.; Narciso, J.; Gupta, N. Reactive melt infiltration as synthesis route for enhanced SiC/CoSi2 composite materials for advanced armor systems. Ceram. Int. 2018, 44, 13182–13190. [Google Scholar] [CrossRef]
- Chen, J.J.; Guo, B.Q.; Liu, H.B.; Liu, H.; Chen, P.W. Dynamic brazilian test of brittle materials using the split hopkinson pressure bar and digital image correlation. Strain 2014, 50, 563–570. [Google Scholar] [CrossRef]
- Duan, Z.; He, H.; Liang, W.; Wang, Z.; He, L.; Zhang, X. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3-modified epoxy resin. Materials 2018, 11, 905. [Google Scholar] [CrossRef]
- Arab, A.; Ahmad, Z.A.; Ahmad, R. Effects of yttria stabilized zirconia (3Y-TZP) percentages on the ZTA dynamic mechanical properties. Int. J. Refract. Met. Hard Mater. 2015, 50, 157–162. [Google Scholar] [CrossRef]
- Sktani, Z.D.I.; Azhar, A.Z.A.; Ratnam, M.M.; Ahmad, Z.A. The influence of in-situ formation of hibonite on the properties of zirconia toughened alumina (ZTA) composites. Ceram. Int. 2014, 40, 6211–6217. [Google Scholar] [CrossRef]
- Abbas, S.; Maleksaeedi, S.; Kolos, E.; Ruys, A.J. Processing and properties of zirconia-toughened alumina prepared by gelcasting. Materials 2015, 8, 4344–4362. [Google Scholar] [CrossRef]
- Pezzotti, G.; Affatato, S.; Rondinella, A.; Yorifuji, M.; Marin, E.; Zhu, W.; McEntire, B.; Bal, S.B.; Yamamoto, K. In vitro versus in vivo phase instability of zirconia-toughened alumina femoral heads: A critical comparative assessment. Materials 2017, 10, 466. [Google Scholar] [CrossRef]
- Zu, Y.; Chen, G.; Fu, X.; Zhou, W. Liquid Phase Assisted Superplastic Deformation of TiO2-Doped ZTA Ceramics. Materials 2019, 12, 2050. [Google Scholar] [CrossRef]
- Perrichon, A.; Liu, B.; Chevalier, J.; Gremillard, L.; Reynard, B.; Farizon, F.; Liao, J.-D.; Geringer, J. Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials. Materials 2017, 10, 569. [Google Scholar] [CrossRef]
- Sktani, Z.D.I.; Rejab, N.A.; Ahmad, Z.A. Tougher and harder zirconia toughened alumina (ZTA) composites through in situ microstructural formation of LaMgAl11O19. Int. J. Refract. Met. Hard Mater. 2019, 79, 60–68. [Google Scholar] [CrossRef]
- Rittidech, A.; Portia, L.; Bongkarn, T. The relationship between microstructure and mechanical properties of Al2O3–MgO ceramics. Mater. Sci. Eng. A 2006, 438, 395–398. [Google Scholar] [CrossRef]
- Dadkhah, M.; Saboori, A.; Jafari, M. Investigating the Physical Properties of Sintered Alumina in the Presence of MgO Nanopowder. J. Mater. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lim, S.Y.; Ng, S.C.; Chew, C.H.; Gan, L.M. Dramatic effect of a small amount of MgO addition on the sintering of Al2O3-5 vol% SiC nanocomposite. Mater. Lett. 1998, 33, 273–277. [Google Scholar] [CrossRef]
- Azhar, A.Z.A.; Mohamad, H.; Ratnam, M.M.; Ahmad, Z.A. The effects of MgO addition on microstructure, mechanical properties and wear performance of zirconia-toughened alumina cutting inserts. J. Alloys Compd. 2010, 497, 316–320. [Google Scholar] [CrossRef]
- Azhar, A.Z.A.; Mohamad, H.; Ratnam, M.M.; Ahmad, Z.A. Effect of MgO particle size on the microstructure, mechanical properties and wear performance of ZTA–MgO ceramic cutting inserts. Int. J. Refract. Met. Hard Mater. 2011, 29, 456–461. [Google Scholar] [CrossRef]
- Arab, A.; Ahmad, R.; Ahmad, Z.A. Effect of SrCO3 addition on the dynamic compressive strength of ZTA. Int. J. Miner. Metall. Mater. 2016, 23, 481–489. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles 1; ASTM: West Conshohocken, PA, USA, 2015; pp. 7–10. [Google Scholar]
- ASTM Standard E384-17. Standard Test Method for Microindentation Hardness of Materials; ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–40. [Google Scholar]
- Niihara, K.; Morena, R.; Hasselman, D.P.H. Evaluation ofK Ic of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1982, 1, 13–16. [Google Scholar] [CrossRef]
- Sarva, S.; Nemat-Nasser, S. Dynamic compressive strength of silicon carbide under uniaxial compression. Mater. Sci. Eng. A 2001, 317, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ramesh, K.T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater. 2004, 52, 355–367. [Google Scholar] [CrossRef]
- Frew, D.J.; Forrestal, M.J.; Chen, W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar. Exp. Mech. 2002, 45, 186–195. [Google Scholar] [CrossRef]
- Sktani, Z.D.I.; Ratnam, M.M.; Ahmad, Z.A. Influence of Combined CaO and CaCO3 Additions on the Microstructure and Properties of ZTA. J. Aust. Ceram. Soc. 2016, 52, 167–176. [Google Scholar]
- Rejab, N.A.; Sktani, Z.D.I.; Dar, T.Y.; Wan Ali, W.F.F.; Jamaludin, A.R.; Ahmad, Z.A. The capability of hibonite elongated grains to influence physical, microstructural, and mechanical properties of zirconia toughened alumina-CeO2-MgO ceramics. Int. J. Refract. Met. Hard Mater. 2016, 58, 104–109. [Google Scholar] [CrossRef]
- Lankford, J.; Predebon, W.W.; Staehler, J.M.; Subhash, G.; Pletka, B.J.; Anderson, C.E. The role of plasticity as a limiting factor in the compressive failure of high strength ceramics. Mech. Mater. 1998, 29, 205–218. [Google Scholar] [CrossRef]
Name | Density (gr/cm3) | Hardness (HV) | Fracture Toughness (MPa·m1/2) |
---|---|---|---|
ZTA-0.2 wt.% MgO | 4.32 | 1635 | 3.8 |
ZTA-0.5 wt.% MgO | 4.39 | 1660 | 3.34 |
ZTA-0.7 wt.% MgO | 4.47 | 1694 | 3.15 |
ZTA-0.9 wt.% MgO | 4.42 | 1653 | 3.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arab, A.; Sktani, Z.D.I.; Zhou, Q.; Ahmad, Z.A.; Chen, P. Effect of MgO Addition on the Mechanical and Dynamic Properties of Zirconia Toughened Alumina (ZTA) Ceramics. Materials 2019, 12, 2440. https://doi.org/10.3390/ma12152440
Arab A, Sktani ZDI, Zhou Q, Ahmad ZA, Chen P. Effect of MgO Addition on the Mechanical and Dynamic Properties of Zirconia Toughened Alumina (ZTA) Ceramics. Materials. 2019; 12(15):2440. https://doi.org/10.3390/ma12152440
Chicago/Turabian StyleArab, Ali, Zhwan Dilshad Ibrahim Sktani, Qiang Zhou, Zainal Arifin Ahmad, and Pengwan Chen. 2019. "Effect of MgO Addition on the Mechanical and Dynamic Properties of Zirconia Toughened Alumina (ZTA) Ceramics" Materials 12, no. 15: 2440. https://doi.org/10.3390/ma12152440
APA StyleArab, A., Sktani, Z. D. I., Zhou, Q., Ahmad, Z. A., & Chen, P. (2019). Effect of MgO Addition on the Mechanical and Dynamic Properties of Zirconia Toughened Alumina (ZTA) Ceramics. Materials, 12(15), 2440. https://doi.org/10.3390/ma12152440