Prediction of the Work-Hardening Exponent for 3104 Aluminum Sheets with Different Grain Sizes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructures of 3104 Sheets after Various Annealing Treatments
3.2. Dependence of the Yield Strength on Grain Size
3.3. Dependence of the Strengthen-Hardening Exponent (n Value) on Grain Size
4. Conclusions
- (1)
- When increasing grain size, similar serrated flow phenomena (also known as the Portevin-Le Chatelier (PLC) effect) were observed under all conditions in studied annealed 3104 aluminum sheet. However, the yield strength (Rp0.2) decreased significantly, which followed the Hall-Petch equation () in the studied range of grain size (12.56–29.19 μm).
- (2)
- The relationship between n and the target strain ε obeyed , where A1 is varying with d and its value is in the range of 0.132–0.364.
- (3)
- Generally, n increases with grain size d but it follows different tendencies with d during the various range of strain. When the strain is 0.2–0.5%, the relationship is: , while it changes to when the strain is greater than 2%.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbadi, M.; Hähner, P.; Zeghloul, A. On the characteristics of Portevin–Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing. Mater. Sci. Eng. A 2002, 337, 194–201. [Google Scholar] [CrossRef]
- Hanse, N. The effect of grain size and strain on the tensile flow stress of aluminum at room temperature. J. Acta Metal. 1977, 25, 863–869. [Google Scholar] [CrossRef]
- Horita, Z.; Fujinami, T.; Nemoto, M.; Langdon, T.G. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Met. Mater. Trans. A 2000, 31, 691–701. [Google Scholar] [CrossRef]
- Tang, C.G.; Zhu, J.H.; Zhang, Y.H.; Zhou, H.J. Effect of strain rate on strain hardening exponent n of some metallic materials. J. Acta Metall. Sin. 1994, 7, 183–186. [Google Scholar]
- Song, Y.Q.; Suo, Z.G.; Guan, Z.P. Mechanical analysis of tensile instability due to material parameter. J. Acta Metal. Sinica. 2006, 42, 337–340. [Google Scholar]
- Song, Y.Q.; Guan, Z.P.; Ma, P.K.; Song, J.W. Theoretical and experimental standardization of strain hardening index in tensile deformation. Acta Metall. Sin. Chin. Ed. 2006, 42, 673–680. [Google Scholar] [CrossRef]
- Tian, N.; Zhao, G.; Zuo, L.; Liu, C. Study on the strain hardening behavior of Al--Mg--Si--Cu alloy sheet for automotive body. Acta Metall. Sin. Chin. Ed. 2010, 46, 613–617. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Q.L.; Bi, Y.M. Deformation hardening behaviors of deformed aluminum alloys. J. Phys. Test. Chem. Anal. 2008, 44, 4–6. [Google Scholar] [CrossRef]
- Mo, D.F.; He, G.Q.; Hu, Z.F.; Liu, X.S. Effect of microstructures on strain hardening exponent prediction of cast aluminum alloy. Acta Metall. Sin. Chin. Ed. 2010, 46, 184–188. [Google Scholar] [CrossRef]
- Tsuchida, S.; Yokoi, H.; Kanetake, N. Measurement of strain hardening exponent n-value by additional rolling strain for aluminum alloy sheets. J. Jpn. Inst. Light Met. 2009, 59, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Caceres, C.; Griffiths, J.; Reiner, P. The influence of microstructure on the Bauschinger effect in an Al-Si-Mg casting alloy. Acta Mater. 1996, 44, 15–23. [Google Scholar] [CrossRef]
- Bergström, Y.; Aronsson, B. The application of a dislocation model to the strain and temperature dependence of the strain hardening exponentn in the Ludwik-Hollomon relation between stress and strain in mild steels. Met. Mater. Trans. A 1972, 3, 1951–1957. [Google Scholar] [CrossRef]
- Song, Y.Q.; Cheng, Y.C.; Wang, X.W. Experimental measurement and elaborate analysis of strain hardening exponent in tensile deformation. J. Sci. China Ser. E 2001, 44, 365–376. [Google Scholar] [CrossRef]
- Wang, Q.G. Plastic deformation behavior of aluminum casting alloys A356/357. Met. Mater. Trans. A 2004, 35, 2707–2718. [Google Scholar] [CrossRef]
- Morrison, W.B. The effect of grain size on the stress-strain relationship in low carbon steel. J. Metall. Mater. Trans. B 1966, 59, 824–846. [Google Scholar]
- Antoine, P.; Vandeputte, S.; Vogt, J.-B. Empirical model predicting the value of the strain-hardening exponent of a Ti-IF steel grade. Mater. Sci. Eng. A 2006, 433, 55–63. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, L.; Hanamura, T.; Torizuka, S. Prediction of the work-hardening exponent for ultrafine-grained steels. Mater. Sci. Eng. A 2012, 536, 269–272. [Google Scholar] [CrossRef]
- Gashti, S.; Fattah-Alhosseini, A.; Mazaheri, Y.; Keshavarz, M. Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding. J. Alloy Compd. 2016, 658, 854–861. [Google Scholar] [CrossRef]
- Liu, K.; Chen, X.G. Evolution of Intermetallics, Dispersoids, and elevated temperature properties at various Fe vontents in Al-Mn-Mg 3004 alloys. J. Metall. Mater. Trans. B 2016, 47, 3291–3300. [Google Scholar] [CrossRef]
- Johnson, W.A. Reaction Kinetics in Processes of Nucleation and Growth. J. Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–458. [Google Scholar]
- Tu, Y.Y.; Qian, H.; Zhou, X.F.; Jiang, J.Q. Effect of Scandium on the Interaction of Concurrent Precipitation and Recrystallization in Commercial AA3003 Aluminum Alloy. J. Metall. Mater. Trans. A 2014, 45, 1883–1891. [Google Scholar] [CrossRef]
- Cottrell, A. LXXXVI. A note on the Portevin-Le Chatelier effect. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1953, 44, 829–832. [Google Scholar] [CrossRef]
- Krishna, K.; Sekhar, K.C.; Tejas, R.; Krishna, N.N.; Sivaprasad, K.; Narayanasamy, R.; Venkateswarlu, K. Effect of cryorolling on the mechanical properties of AA5083 alloy and the Portevin–Le Chatelier phenomenon. Mater. Des. 2015, 67, 107–117. [Google Scholar] [CrossRef]
- Huskins, E.; Cao, B.; Ramesh, K. Strengthening mechanisms in an Al–Mg alloy. Mater. Sci. Eng. A 2010, 527, 1292–1298. [Google Scholar] [CrossRef]
- Klose, F.; Ziegenbein, A.; Weidenmüller, J.; Neuhäuser, H.; Hähner, P. Portevin–LeChatelier effect in strain and stress controlled tensile tests. Comput. Mater. Sci. 2003, 26, 80–86. [Google Scholar] [CrossRef]
- Li, S.L.; Wu, R.; Wei, Y.Z.; Wu, Z.F.; Zhou, X.J.; Zhang, Y.F.; Xu, G. Correlation of morphological anisotropy and Lankford value of deep drawing sheets hot-rolled by compact strip production. Int. J. Miner. Met. Mater. 2012, 19, 934–938. [Google Scholar] [CrossRef]
- Stoudt, M.R.; Ricker, R.E. The relationship between grain size and the surface roughening behavior of Al-Mg alloys. Met. Mater. Trans. A 2002, 33, 2883–2889. [Google Scholar] [CrossRef]
- Stoudt, M.R.; Hubbard, J.B.; Leigh, S.D. On the relationship between deformation-induced surface roughness and plastic strain in AA5052—Is it really linear? Met. Mater. Trans. A 2011, 42, 2668–2679. [Google Scholar] [CrossRef]
Parameters in Equation (3) | Grain Size/μm | |||||
---|---|---|---|---|---|---|
12.65 | 13.8 | 16.46 | 21.68 | 28.11 | 29.19 | |
A0 | 0.26818 | 0.27149 | 0.28778 | 0.27042 | 0.28061 | 0.27934 |
A1 | 0.36385 | 0.23346 | 0.20038 | 0.14191 | 0.13157 | 0.14068 |
t | 0.91024 | 1.11051 | 0.82007 | 1.19239 | 1.08674 | 1.09368 |
Target Strain | 2% | 4% | 6% | 8% | 10% | 12% | 14% | 16% |
---|---|---|---|---|---|---|---|---|
Parameter in Equation (6) | ||||||||
M | 0.3160 | 0.3081 | 0.3151 | 0.3148 | 0.3057 | 0.2976 | 0.3100 | 0.3097 |
K | 0.3091 | 0.1623 | 0.1624 | 0.1613 | 0.1291 | 0.1062 | 0.1634 | 0.1811 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, N.; Yuan, F.; Duan, C.; Liu, K.; Wang, G.; Zhao, G.; Zuo, L. Prediction of the Work-Hardening Exponent for 3104 Aluminum Sheets with Different Grain Sizes. Materials 2019, 12, 2368. https://doi.org/10.3390/ma12152368
Tian N, Yuan F, Duan C, Liu K, Wang G, Zhao G, Zuo L. Prediction of the Work-Hardening Exponent for 3104 Aluminum Sheets with Different Grain Sizes. Materials. 2019; 12(15):2368. https://doi.org/10.3390/ma12152368
Chicago/Turabian StyleTian, Ni, Fei Yuan, Ceheng Duan, Kun Liu, Guangdong Wang, Gang Zhao, and Liang Zuo. 2019. "Prediction of the Work-Hardening Exponent for 3104 Aluminum Sheets with Different Grain Sizes" Materials 12, no. 15: 2368. https://doi.org/10.3390/ma12152368
APA StyleTian, N., Yuan, F., Duan, C., Liu, K., Wang, G., Zhao, G., & Zuo, L. (2019). Prediction of the Work-Hardening Exponent for 3104 Aluminum Sheets with Different Grain Sizes. Materials, 12(15), 2368. https://doi.org/10.3390/ma12152368