Progress on Electrolytes Development in Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Device Structure, Operating Principle and Charge Transport Mechanisms in DSSCs
- A photoanode, which is traditionally fabricated on a transparent conducting oxide (TCO) glass, such as a glass substrate that is coated with indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO), by depositing the mesoporous electron transporting TiO2 layer on this, either via doctor blading [28,31], screen printing [2,32,33], or inkjet printing [34,35].
- A CE (cathode), comprising a similar TCO-coated conducting glass substrate to that of the photoanode loaded with a catalyst layer, such as Pt or carbon [4,36], which receives electrons from external circuits and reduces the triiodide ion back to an iodide ion through an efficient charge transfer process.
3. Configurations of DSSCs and the Role of Electrolytes
3.1. Bifacial Semi-Transparent and Front-Illuminated DSSCs on Rigid and Flexible Substrates
3.1.1. Bifacial and Front-Illuminated DSSCs on Rigid Substrates
3.1.2. Bifacial and Front-Illuminated DSSCs on Polymer Substrates
3.2. Reverse-Illuminated DSSCs
3.3. Metal Counter Electrode-Based DSSCs
3.4. Monolithic DSSCs
3.5. Solid State DSSCs
4. Electrolytes for DSSCs
4.1. Liquid Electrolytes
4.1.1. Organic Solvent-Based Electrolytes
4.1.2. Ionic Liquid-Based Electrolytes
4.1.3. Alternative Redox Mediator-Based Electrolytes
Cobalt-Based Mediators
Copper-Based Mediators
Ferrocene-Based Mediators
Nickel-Based Mediators
4.2. Gel Electrolytes (Quasi-Solid State Electrolytes)
- (i)
- A liquid electrolyte can be solidified by adding a polymer matrix, which acts as a gelator. The resulting gel polymer electrolytes can be further classified according their formation mechanism, as either thermoplastic (for physical cross-linking) or thermosetting (for chemical cross-linking) [211,212,213].
- (ii)
- (iii)
4.2.1. Gel Polymer Electrolytes
Thermoplastic Polymer Electrolytes (TPPE)
Thermosetting Polymer Electrolytes (TSPE)
4.2.2. Composite Polymer Electrolytes
Inorganic Nanoparticle-Based Composite Polymer Electrolytes
Carbon-Based Composite Polymer Electrolytes
4.2.3. Quasi-Solid Ionic Liquid Electrolytes
4.3. Solid State Hole-Transporting Materials
4.3.1. Solid State Ionic Conductors
4.3.2. Inorganic HTMs
- (a)
- (b)
- (c)
- (d)
4.3.3. Organic HTMs
5. Methods for Electrolyte Application from Lab-Sized DSSCs to Large Area Modules
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338. [Google Scholar] [CrossRef] [PubMed]
- Renewables Global Status Report. Available online: http://www.ren21.net/status-of-renewables/global-status-report/ (accessed on 28 July 2018).
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-Sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Goetzberger, A.; Hebling, C. Photovoltaic materials, past, present, future. Sol. Energy Mater. Sol. Cells 2000, 62, 1–19. [Google Scholar] [CrossRef]
- Green, M.A. Introduction. In Third Generation Photovoltaics: Advanced Solar Energy Conversion; Green, M.A., Ed.; Springer Series in Photonics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–6. ISBN 978-3-540-26563-4. [Google Scholar]
- Bittner, F.; Oekermann, T.; Wark, M. Scale-Up of the Electrodeposition of ZnO/Eosin Y Hybrid Thin Films for the Fabrication of Flexible Dye-Sensitized Solar Cell Modules. Materials 2018, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Juhász Junger, I.; Wehlage, D.; Böttjer, R.; Grothe, T.; Juhász, L.; Grassmann, C.; Blachowicz, T.; Ehrmann, A. Dye-Sensitized Solar Cells with Electrospun Nanofiber Mat-Based Counter Electrodes. Materials 2018, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.G.; Martineau, D.; Li, X.; Ozkan, M.; Tiihonen, A.; Dar, M.I.; Sarikka, T.; Zakeeruddin, S.M.; Paltakari, J.; Lund, P.D.; et al. Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility. Adv. Mater. Technol. 2017, 2, 1600183. [Google Scholar] [CrossRef]
- Hashmi, S.G.; Ozkan, M.; Halme, J.; Misic, K.D.; Zakeeruddin, S.M.; Paltakari, J.; Grätzel, M.; Lund, P.D. High performance dye-Sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy 2015, 17, 206–215. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-Cost, high-Efficiency solar cell based on dye-Sensitized colloidal TiO 2 films. Nature 1991, 353, 737. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Jose, R.; Brown, T.M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-Sensitized solar modules. Energy Environ. Sci. 2014, 7, 3952–3981. [Google Scholar] [CrossRef]
- Lim, D.-S.; Park, K.-W.; Wiles, A.A.; Hong, J. Metal-Free Organic Chromophores Featuring an Ethynyl-Thienothiophene Linker with an n-Hexyl Chain for Translucent Dye-Sensitized Solar Cells. Materials 2019, 12, 1741. [Google Scholar] [CrossRef] [PubMed]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-Efficient dye-Sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef] [PubMed]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-Sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule 2018, 2, 1108–1117. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-Sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Pradhan, S.C.; Hagfeldt, A.; Soman, S. Resurgence of DSCs with copper electrolyte: A detailed investigation of interfacial charge dynamics with cobalt and iodine based electrolytes. J. Mater. Chem. A 2018, 6, 22204–22214. [Google Scholar] [CrossRef]
- Solar Cells, Developments. Available online: https://www.solaronix.com/solarcells/developments/ (accessed on 28 July 2018).
- Dye Sensitized Solar Cells (DSSC) GCell. Available online: https://gcell.com/gcell-products (accessed on 28 July 2018).
- Applications. Available online: https://exeger.com/applications (accessed on 28 July 2018).
- Ricoh Develops High-Performance Complete Solid-State Dye-Sensitized Solar Cell Suitable for Indoor Lighting. Available online: https://www.ricoh.com/release/2014/0611_1.html (accessed on 28 July 2018).
- Pettersson, H.; Gruszecki, T. Long-Term stability of low-power dye-sensitised solar cells prepared by industrial methods. Sol. Energy Mater. Sol. Cells 2001, 70, 203–212. [Google Scholar] [CrossRef]
- Harikisun, R.; Desilvestro, H. Long-term stability of dye solar cells. Sol. Energy 2011, 85, 1179–1188. [Google Scholar] [CrossRef]
- Anggraini, P.N.; Retnaningsih, L.; Hidayat, J. Reliability performance of up-Scaling DSSC into sub-module in series design using hermetic sealing. J. Phys. Conf. Ser. 2018, 985, 012052. [Google Scholar] [CrossRef]
- Kay, A.; Grätzel, M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 1996, 44, 99–117. [Google Scholar] [CrossRef]
- Miettunen, K.; Halme, J.; Lund, P. Metallic and plastic dye solar cells. Wiley Interdiscip. Rev. Energy Environ. 2013, 2, 104–120. [Google Scholar] [CrossRef]
- Hashmi, G.; Miettunen, K.; Peltola, T.; Halme, J.; Asghar, I.; Aitola, K.; Toivola, M.; Lund, P. Review of materials and manufacturing options for large area flexible dye solar cells. Renew. Sustain. Energy Rev. 2011, 15, 3717–3732. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.; Lee, B.; He, J.; Chang, R.P.H.; Kanatzidis, M.G. All-Solid-State dye-Sensitized solar cells with high efficiency. Nature 2012, 485, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Burnside, S.; Winkel, S.; Brooks, K.; Shklover, V.; Gra¨tzel, M.; Hinsch, A.; Kinderman, R.; Bradbury, C.; Hagfeldt, A.; Pettersson, H. Deposition and characterization of screen-Printed porous multi-Layer thick film structures from semiconducting and conducting nanomaterials for use in photovoltaic devices. J. Mater. Sci. Mater. Electron. 2000, 11, 355–362. [Google Scholar] [CrossRef]
- Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M.K.; Liska, P.; Péchy, P.; Grätzel, M. Fabrication of screen-Printing pastes from TiO2 powders for dye-Sensitised solar cells. Prog. Photovolt. Res. Appl. 2007, 15, 603–612. [Google Scholar] [CrossRef]
- Dürr, M.; Schmid, A.; Obermaier, M.; Rosselli, S.; Yasuda, A.; Nelles, G. Low-Temperature fabrication of dye-Sensitized solar cells by transfer of composite porous layers. Nat. Mater. 2005, 4, 607. [Google Scholar] [CrossRef]
- Cherrington, R.; Hughes, D.J.; Senthilarasu, S.; Goodship, V. Inkjet-Printed TiO2 Nanoparticles from Aqueous Solutions for Dye-Sensitized Solar Cells (DSSCs). Energy Technol. 2015, 3, 866–870. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in Dye-Sensitized Solar Cells. Chem. Rev. 2015, 115, 2136–2173. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Hao, S.; Li, P.; Lin, J.; Huang, M.; Fang, L.; Huang, Y. Progress on the electrolytes for dye-Sensitized solar cells. Pure Appl. Chem. 2009, 80, 2241–2258. [Google Scholar] [CrossRef]
- Halme, J.; Vahermaa, P.; Miettunen, K.; Lund, P. Device Physics of Dye Solar Cells. Adv. Mater. 2010, 22, E210–E234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagfeldt, A.; Grätzel, M. Molecular Photovoltaics. Acc. Chem. Res. 2000, 33, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Ha, N.-L.C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S.M.; Péchy, P.; Nazeeruddin, M.K.; Grätzel, M. High-efficiency (7.2%) flexible dye-Sensitized solar cells with Ti-Metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 2006, 4004–4006. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847. [Google Scholar] [CrossRef] [PubMed]
- Miettunen, K.; Ruan, X.; Saukkonen, T.; Halme, J.; Toivola, M.; Guangsheng, H.; Lund, P. Stability of Dye Solar Cells with Photoelectrode on Metal Substrates. J. Electrochem. Soc. 2010, 157, B814–B819. [Google Scholar] [CrossRef] [Green Version]
- Miettunen, K.; Halme, J.; Toivola, M.; Lund, P. Initial Performance of Dye Solar Cells on Stainless Steel Substrates. J. Phys. Chem. C 2008, 112, 4011–4017. [Google Scholar] [CrossRef]
- Miettunen, K.; Etula, J.; Saukkonen, T.; Jouttijärvi, S.; Halme, J.; Romu, J.; Lund, P. Insights into corrosion in dye solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 1045–1056. [Google Scholar] [CrossRef]
- Lund, P.; Halme, J.; Asghar, I.; Ruuskanen, A.; Miettunen, K.; Hashmi, S.G. Process Steps towards a Flexible Dye Solar Cell Module. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (27th EU PVSEC), Frankfurt, Germany, 24–28 September 2012. [Google Scholar]
- Ma, T.; Fang, X.; Akiyama, M.; Inoue, K.; Noma, H.; Abe, E. Properties of several types of novel counter electrodes for dye-Sensitized solar cells. J. Electroanal. Chem. 2004, 574, 77–83. [Google Scholar] [CrossRef]
- Miettunen, K.; Asghar, I.; Ruan, X.; Halme, J.; Saukkonen, T.; Lund, P. Stabilization of metal counter electrodes for dye solar cells. J. Electroanal. Chem. 2011, 653, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Miettunen, K.; Halme, J.; Saukkonen, T.; Peltola, T.; Toivola, M.; Lund, P. Performance degradation of dye solar cells on flexible stainless steel substrates. In Proceedings of the EUPVSEC Proceeding, Hamburg, Germany, 21–25 September 2009. [Google Scholar]
- Hashmi, S.G.; Moehl, T.; Halme, J.; Ma, Y.; Saukkonen, T.; Yella, A.; Giordano, F.; Decoppet, J.D.; Zakeeruddin, S.M.; Lund, P.; et al. A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-Sensitized solar cells. J. Mater. Chem. A 2014, 2, 19609–19615. [Google Scholar] [CrossRef]
- Campbell, W.M.; Burrell, A.K.; Officer, D.L.; Jolley, K.W. Porphyrins as light harvesters in the dye-Sensitised TiO2 solar cell. Coord. Chem. Rev. 2004, 248, 1363–1379. [Google Scholar] [CrossRef]
- Ito, S.; Nazeeruddin, M.K.; Liska, P.; Comte, P.; Charvet, R.; Péchy, P.; Jirousek, M.; Kay, A.; Zakeeruddin, S.M.; Grätzel, M. Photovoltaic characterization of dye-Sensitized solar cells: Effect of device masking on conversion efficiency. Prog. Photovolt. Res. Appl. 2006, 14, 589–601. [Google Scholar] [CrossRef]
- Zhang, K.; Qin, C.; Yang, X.; Islam, A.; Zhang, S.; Chen, H.; Han, L. High-Performance, Transparent, Dye-Sensitized Solar Cells for See-Through Photovoltaic Windows. Adv. Energy Mater. 2014, 4, 1301966. [Google Scholar] [CrossRef]
- Barraud, E. Stained Glass Solar Windows for the Swiss Tech Convention Center. Chim. Int. J. Chem. 2013, 67. [Google Scholar] [CrossRef] [PubMed]
- SwissTech Convention Center. Available online: http://www.bipv.ch/index.php/en/other-s-en/item/1197-swisstech-eng (accessed on 28 July 2018).
- Conenna, N. Coloured Photovoltaic Tech: The Grätzel’s Cells|CuE. Close Energy Eng. 2016. Available online: https://energycue.it/en/coloured-photovoltaic-tech-the-gratzels-cells/8784/ (accessed on 28 July 2018).
- Zhang, D.; Ito, S.; Wada, Y.; Kitamura, T.; Yanagida, S. Nanocrystalline TiO2 Electrodes Prepared by Water-Medium Screen Printing Technique. Chem. Lett. 2001, 30, 1042–1043. [Google Scholar] [CrossRef]
- Kato, N.; Takeda, Y.; Higuchi, K.; Takeichi, A.; Sudo, E.; Tanaka, H.; Motohiro, T.; Sano, T.; Toyoda, T. Degradation analysis of dye-Sensitized solar cell module after long-term stability test under outdoor working condition. Sol. Energy Mater. Sol. Cells 2009, 93, 893–897. [Google Scholar] [CrossRef]
- Kato, N.; Higuchi, K.; Tanaka, H.; Nakajima, J.; Sano, T.; Toyoda, T. Improvement in long-term stability of dye-Sensitized solar cell for outdoor use. Sol. Energy Mater. Sol. Cells 2011, 95, 301–305. [Google Scholar] [CrossRef]
- Weerasinghe, H.C.; Huang, F.; Cheng, Y.-B. Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2013, 2, 174–189. [Google Scholar] [CrossRef]
- Weerasinghe, H.C.; Sirimanne, P.M.; Simon, G.P.; Cheng, Y.-B. Cold isostatic pressing technique for producing highly efficient flexible dye-Sensitised solar cells on plastic substrates. Prog. Photovolt. Res. Appl. 2012, 20, 321–332. [Google Scholar] [CrossRef]
- Kim, S.-S.; Nah, Y.-C.; Noh, Y.-Y.; Jo, J.; Kim, D.-Y. Electrodeposited Pt for cost-Efficient and flexible dye-Sensitized solar cells. Electrochim. Acta 2006, 51, 3814–3819. [Google Scholar] [CrossRef]
- Fu, N.; Xiao, X.; Zhou, X.; Zhang, J.; Lin, Y. Electrodeposition of Platinum on Plastic Substrates as Counter Electrodes for Flexible Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 2850–2857. [Google Scholar] [CrossRef]
- Yoon, C.H.; Vittal, R.; Lee, J.; Chae, W.-S.; Kim, K.-J. Enhanced performance of a dye-Sensitized solar cell with an electrodeposited-Platinum counter electrode. Electrochim. Acta 2008, 53, 2890–2896. [Google Scholar] [CrossRef]
- Morita, S.; Ikegami, M.; Wei, T.-C.; Miyasaka, T. Quantum Conversion Enhancement with TiOx Compact Layers for ITO-Plastic-Film-Based Low-Temperature-Processed Dye-Sensitized Photoelectrodes. ChemPhysChem 2014, 15, 1190–1193. [Google Scholar] [CrossRef]
- Hsieh, T.-Y.; Wei, T.-C.; Zhai, P.; Feng, S.-P.; Ikegami, M.; Miyasaka, T. A room-Temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-Sensitized cells. J. Power Sources 2015, 283, 351–357. [Google Scholar] [CrossRef]
- Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Grätzel, M. The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating “Planar” Organic Dyes. Nano Lett. 2008, 8, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Lund, P.D.; Halme, J.; Hashmi, G.; Asghar, I.; Miettunen, K. Application of dye-Sensitized and perovskite solar cells on flexible substrates. Flex. Print. Electron. 2018, 3, 013002. [Google Scholar] [CrossRef]
- Park, J.H.; Jun, Y.; Yun, H.-G.; Lee, S.-Y.; Kang, M.G. Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate. J. Electrochem. Soc. 2008, 155, F145–F149. [Google Scholar] [CrossRef]
- Kang, M.G.; Park, N.-G.; Ryu, K.S.; Chang, S.H.; Kim, K.-J. A 4.2% efficient flexible dye-Sensitized TiO2 solar cells using stainless steel substrate. Sol. Energy Mater. Sol. Cells 2006, 90, 574–581. [Google Scholar] [CrossRef]
- Toivola, M.; Peltola, T.; Miettunen, K.; Halme, J.; Lund, P. Thin Film Nano Solar Cells—From Device Optimization to Upscaling. J. Nanosci. Nanotechnol. 2010, 10, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tan, W.; Zhang, J.; Zhou, X.; Zhang, X.; Lin, Y. Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-Sensitized solar cells. Electrochim. Acta 2010, 55, 3721–3726. [Google Scholar] [CrossRef]
- Miettunen, K.; Toivola, M.; Hashmi, G.; Salpakari, J.; Asghar, I.; Lund, P. A carbon gel catalyst layer for the Roll-To-Roll production of dye solar cells. Carbon 2011, 49, 528–532. [Google Scholar] [CrossRef]
- Aitola, K.; Halme, J.; Halonen, N.; Kaskela, A.; Toivola, M.; Nasibulin, A.G.; Kordás, K.; Tóth, G.; Kauppinen, E.I.; Lund, P.D. Comparison of dye solar cell counter electrodes based on different carbon nanostructures. Thin Solid Films 2011, 519, 8125–8134. [Google Scholar] [CrossRef]
- Hashmi, S.G.; Halme, J.; Saukkonen, T.; Rautama, E.-L.; Lund, P. High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 17689–17695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitola, K.; Borghei, M.; Kaskela, A.; Kemppainen, E.; Nasibulin, A.G.; Kauppinen, E.I.; Lund, P.D.; Ruiz, V.; Halme, J. Flexible metal-Free counter electrode for dye solar cells based on conductive polymer and carbon nanotubes. J. Electroanal. Chem. 2012, 683, 70–74. [Google Scholar] [CrossRef]
- Aitola, K.; Halme, J.; Feldt, S.; Lohse, P.; Borghei, M.; Kaskela, A.; Nasibulin, A.G.; Kauppinen, E.I.; Lund, P.D.; Boschloo, G.; et al. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-Based redox mediator. Electrochim. Acta 2013, 111, 206–209. [Google Scholar] [CrossRef]
- Hashmi, S.G.; Halme, J.; Ma, Y.; Saukkonen, T.; Lund, P. A Single-Walled Carbon Nanotube Coated Flexible PVC Counter Electrode for Dye-Sensitized Solar Cells. Adv. Mater. Interfaces 2014, 1, 1300055. [Google Scholar] [CrossRef]
- Kavan, L.; Yum, J.-H.; Nazeeruddin, M.K.; Grätzel, M. Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 9171–9178. [Google Scholar] [CrossRef]
- Kavan, L.; Yum, J.-H.; Grätzel, M. Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells. Nano Lett. 2011, 11, 5501–5506. [Google Scholar] [CrossRef]
- Kavan, L.; Yum, J.H.; Grätzel, M. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets. ACS Nano 2011, 5, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Roy-Mayhew, J.D.; Bozym, D.J.; Punckt, C.; Aksay, I.A. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano 2010, 4, 6203–6211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.; Pazoki, M.; Aitola, K.; Jeong, S.; Johansson, E.M.J.; Hagfeldt, A.; Boschloo, G. Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 2074–2079. [Google Scholar] [CrossRef]
- Gemeiner, P.; Peřinka, N.; Švorc, Ľ.; Hatala, M.; Gál, L.; Belovičová, M.; Syrový, T.; Mikula, M. Pt–free counter electrodes based on modified screen–Printed PEDOT:PSS catalytic layers for dye–Sensitized solar cells. Mater. Sci. Semicond. Process. 2017, 66, 162–169. [Google Scholar] [CrossRef]
- Laiho, P.; Rafiee, M.; Liao, Y.; Hussain, A.; Ding, E.-X.; Kauppinen, E.I. Wafer-Scale Thermophoretic Dry Deposition of Single-Walled Carbon Nanotube Thin Films. ACS Omega 2018, 3, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Aitola, K.; Kaskela, A.; Halme, J.; Ruiz, V.; Nasibulin, A.G.; Kauppinen, E.I.; Lund, P.D. Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells. J. Electrochem. Soc. 2010, 157, B1831–B1837. [Google Scholar] [CrossRef]
- Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Highly-ordered TiO2nanotube arrays up to 220 mathrmm um in length: Use in water photoelectrolysis and dye-Sensitized solar cells. Nanotechnology 2007, 18, 065707. [Google Scholar] [CrossRef]
- Liao, J.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-Foil substrate for efficient flexible dye-Sensitized solar cells. Energy Environ. Sci. 2012, 5, 5750–5757. [Google Scholar] [CrossRef]
- Klein, M.; Szkoda, M.; Sawczak, M.; Cenian, A.; Lisowska-Oleksiak, A.; Siuzdak, K. Flexible dye-Sensitized solar cells based on Ti/TiO2 nanotubes photoanode and Pt-Free and TCO-Free counter electrode system. Solid State Ion. 2017, 302, 192–196. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chen, Y.-W.; Chen, C.-M. Chromatic Titanium Photoanode for Dye-Sensitized Solar Cells under Rear Illumination. ACS Appl. Mater. Interfaces 2018, 10, 2658–2666. [Google Scholar] [CrossRef]
- Chen, C.-M.; Chen, C.-H.; Wei, T.-C. Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-Sensitized solar cells. Electrochim. Acta 2010, 55, 1687–1695. [Google Scholar] [CrossRef]
- Weerasinghe, H.C.; Sirimanne, P.M.; Franks, G.V.; Simon, G.P.; Cheng, Y.B. Low temperature chemically sintered nano-Crystalline TiO2 electrodes for flexible dye-Sensitized solar cells. J. Photochem. Photobiol. Chem. 2010, 213, 30–36. [Google Scholar] [CrossRef]
- Pettersson, H.; Gruszecki, T.; Schnetz, C.; Streit, M.; Xu, Y.; Sun, L.; Gorlov, M.; Kloo, L.; Boschloo, G.; Häggman, L.; et al. Parallel-Connected monolithic dye-Sensitised solar modules. Prog. Photovolt. Res. Appl. 2010, 18, 340–345. [Google Scholar] [CrossRef]
- Hinsch, A.; Behrens, S.; Berginc, M.; Bönnemann, H.; Brandt, H.; Drewitz, A.; Einsele, F.; Faßler, D.; Gerhard, D.; Gores, H.; et al. Material development for dye solar modules: Results from an integrated approach. Prog. Photovolt. Res. Appl. 2008, 16, 489–501. [Google Scholar] [CrossRef]
- Ito, S.; Takahashi, K. Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte. Int. J. Photoenergy 2012, 2012. [Google Scholar] [CrossRef]
- Thompson, S.J.; Pringle, J.M.; Zhang, X.L.; Cheng, Y.-B. A novel carbon–PEDOT composite counter electrode for monolithic dye-Sensitized solar cells. J. Phys. Appl. Phys. 2012, 46, 024007. [Google Scholar] [CrossRef]
- Moia, D.; Cappel, U.B.; Leijtens, T.; Li, X.; Telford, A.M.; Snaith, H.J.; O’Regan, B.C.; Nelson, J.; Barnes, P.R.F. The Role of Hole Transport between Dyes in Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. C 2015, 119, 18975–18985. [Google Scholar] [CrossRef] [Green Version]
- Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-State dye-Sensitized mesoporous TiO2 solar cells with high photon-to-Electron conversion efficiencies. Nature 1998, 395, 583. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, M.; Ding, X.; Li, H.; Qiao, F.; Xu, L.; Li, H.; Li, H. Molecular engineering of triphenylamine functionalized phenoxazine sensitizers for highly efficient solid-State dye sensitized solar cells. Dyes Pigments 2019, 162, 606–610. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Yong, S.; Arumugam, S.; Beeby, S. Flexible Printed Monolithic-Structured Solid-State Dye Sensitized Solar Cells on Woven Glass Fibre Textile for Wearable Energy Harvesting Applications. Sci. Rep. 2019, 9, 1362. [Google Scholar] [CrossRef]
- Cao, Y.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J.; Pellet, N.; Giordano, F.; Zakeeruddin, S.M.; Moser, J.-E.; Freitag, M.; et al. 11% efficiency solid-State dye-Sensitized solar cells with copper(II/I) hole transport materials. Nat. Commun. 2017, 8, 15390. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Grätzel, C.; Zakeeruddin, S.M.; Grätzel, M. Recent developments in redox electrolytes for dye-Sensitized solar cells. Energy Environ. Sci. 2012, 5, 9394–9405. [Google Scholar] [CrossRef]
- Bella, F.; Mobarak, N.N.; Jumaah, F.N.; Ahmad, A. From seaweeds to biopolymeric electrolytes for third generation solar cells: An intriguing approach. Electrochim. Acta 2015, 151, 306–311. [Google Scholar] [CrossRef]
- Benesperi, I.; Michaels, H.; Freitag, M. The researcher’s guide to solid-state dye-Sensitized solar cells. J. Mater. Chem. C 2018, 6, 11903–11942. [Google Scholar] [CrossRef]
- Fu, N.-Q.; Fang, Y.-Y.; Duan, Y.-D.; Zhou, X.-W.; Xiao, X.-R.; Lin, Y. High-Performance Plastic Platinized Counter Electrode via Photoplatinization Technique for Flexible Dye-Sensitized Solar Cells. ACS Nano 2012, 6, 9596–9605. [Google Scholar] [CrossRef] [PubMed]
- Miettunen, K.; Jouttijärvi, S.; Jiang, R.; Saukkonen, T.; Romu, J.; Halme, J.; Lund, P. Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolyte. J. Electrochem. Soc. 2014, 161, H138–H143. [Google Scholar] [CrossRef]
- Bazargan, M.H.; Byranvand, M.; Nemati, A. A new counter electrode based on copper sheet for flexible dye sensitized solar cells. Chalcogenide Lett. 2010, 7, 515–519. [Google Scholar]
- Yun, H.-G.; Bae, B.-S.; Kang, M.G. A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye-Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 337–342. [Google Scholar] [CrossRef]
- Behrouznejad, F.; Taghavinia, N.; Ghazyani, N. Monolithic dye sensitized solar cell with metal foil counter electrode. Org. Electron. 2018, 57, 194–200. [Google Scholar] [CrossRef]
- Wang, P.; Zakeeruddin, S.M.; Moser, J.E.; Humphry-Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Nazeeruddin, M.K.; Grätzel, M. Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells. Adv. Mater. 2004, 16, 1806–1811. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-Sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. High efficiency and stable dye-Sensitized solar cells with an organic chromophore featuring a binary π-Conjugated spacer. Chem. Commun. 2009, 2198–2200. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.I.; Miettunen, K.; Halme, J.; Vahermaa, P.; Toivola, M.; Aitola, K.; Lund, P. Review of stability for advanced dye solar cells. Energy Environ. Sci. 2010, 3, 418–426. [Google Scholar] [CrossRef]
- Law, C.; Pathirana, S.C.; Li, X.; Anderson, A.Y.; Barnes, P.R.F.; Listorti, A.; Ghaddar, T.H.; O.’Regan, B.C. Water-Based Electrolytes for Dye-Sensitized Solar Cells. Adv. Mater. 2010, 22, 4505–4509. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, F. A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Adv. Chem. 2014, 2014. [Google Scholar] [CrossRef]
- Buzzeo, M.C.; Hardacre, C.; Compton, R.G. Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem 2006, 7, 176–180. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Falco, M.; Viscardi, G.; Barolo, C.; Grätzel, M.; Gerbaldi, C. Unveiling iodine-Based electrolytes chemistry in aqueous dye-Sensitized solar cells. Chem. Sci. 2016, 7, 4880–4890. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Piana, G.; Giacona, G.; Viscardi, G.; Grätzel, M.; Barolo, C.; Gerbaldi, C. Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Electrochim. Acta 2019, 302, 31–37. [Google Scholar] [CrossRef]
- Galliano, S.; Bella, F.; Piana, G.; Giacona, G.; Viscardi, G.; Gerbaldi, C.; Grätzel, M.; Barolo, C. Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design. Sol. Energy 2018, 163, 251–255. [Google Scholar] [CrossRef]
- Glinka, A.; Gierszewski, M.; Ziółek, M. Effects of Aqueous Electrolyte, Active Layer Thickness and Bias Irradiation on Charge Transfer Rates in Solar Cells Sensitized with Top Efficient Carbazole Dyes. J. Phys. Chem. C 2018, 122, 8147–8158. [Google Scholar] [CrossRef]
- Boldrini, C.L.; Manfredi, N.; Perna, F.M.; Trifiletti, V.; Capriati, V.; Abbotto, A. Dye-Sensitized Solar Cells that use an Aqueous Choline Chloride-Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technol. 2017, 5, 345–353. [Google Scholar] [CrossRef]
- Lin, R.Y.-Y.; Wu, F.-L.; Li, C.-T.; Chen, P.-Y.; Ho, K.-C.; Lin, J.T. High-Performance Aqueous/Organic Dye-Sensitized Solar Cells Based on Sensitizers Containing Triethylene Oxide Methyl Ether. ChemSusChem 2015, 8, 2503–2513. [Google Scholar] [CrossRef] [PubMed]
- Hauch, A.; Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-Sensitized solar cells. Electrochim. Acta 2001, 46, 3457–3466. [Google Scholar] [CrossRef]
- Lee, H.-S.; Bae, S.-H.; Jo, Y.; Kim, K.-J.; Jun, Y.; Han, C.-H. A high temperature stable electrolyte system for dye-Sensitized solar cells. Electrochim. Acta 2010, 55, 7159–7165. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Li, P. Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-Sensitized solar cells. J. Power Sources 2007, 173, 585–591. [Google Scholar] [CrossRef]
- Subramania, A.; Vijayakumar, E.; Sivasankar, N.; Sathiya Priya, A.R.; Kim, K.-J. Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/Triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics 2013, 19, 1649–1653. [Google Scholar] [CrossRef]
- Lee, C.-P.; Li, C.-T.; Ho, K.-C. Use of organic materials in dye-Sensitized solar cells. Mater. Today 2017, 20, 267–283. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-Sensitized solar cell. Chem. Commun. 2008, 2635–2637. [Google Scholar] [CrossRef]
- 12Nazeeruddin, M.K.; Péchy, P.; Renouard, T.; Zakeeruddin, S.M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc. 2001, 123, 1613–1624. [Google Scholar] [CrossRef]
- Yum, J.-H.; Jung, I.; Baik, C.; Ko, J.; Nazeeruddin, M.K.; Grätzel, M. High efficient donor–Acceptor ruthenium complex for dye-Sensitized solar cell applications. Energy Environ. Sci. 2008, 2, 100–102. [Google Scholar] [CrossRef]
- Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem. Rev. 2002, 102, 3667–3692. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004, 248, 2459–2477. [Google Scholar] [CrossRef]
- Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M.A.; Tanabe, N.; Watanabe, M. High performance dye-Sensitized solar cells using ionic liquids as their electrolytes. J. Photochem. Photobiol. Chem. 2004, 164, 87–92. [Google Scholar] [CrossRef]
- Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S.M.; Grätzel, M. Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids. J. Phys. Chem. C 2007, 111, 6550–6560. [Google Scholar] [CrossRef]
- Decoppet, J.-D.; Khan, S.B.; Al-Ghamdi, M.S.A.; Alhogbi, B.G.; Asiri, A.M.; Zakeeruddin, S.M.; Grätzel, M. Influence of Ionic Liquid Electrolytes on the Photovoltaic Performance of Dye-Sensitized Solar Cells. Energy Technol. 2017, 5, 321–326. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Zhang, Y.; Guo, J.; Li, H.; Yan, F. Dye-Sensitized solar cells based on cobalt-Containing room temperature ionic liquid redox shuttles. RSC Adv. 2017, 7, 13689–13695. [Google Scholar] [CrossRef]
- Tuyet Nguyen, P.; Ngoc Nguyen, T.; Son Nguyen, V.; Truong Nguyen, H.; Ngo, D.K.T.; Hoang Tran, P. 1-Alkenyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids: Novel and low-Viscosity ionic liquid electrolytes for dye-Sensitized solar cells. RSC Adv. 2018, 8, 13142–13147. [Google Scholar] [CrossRef]
- Tedla, A.; Tai, Y. Influence of binary solvent system on the stability and efficiency of liquid dye sensitized solar cells. J. Photochem. Photobiol. Chem. 2018, 358, 70–75. [Google Scholar] [CrossRef]
- Denizalti, S.; Ali, A.K.; Ela, Ç.; Ekmekci, M.; Erten-Ela, S. Dye-Sensitized solar cells using ionic liquids as redox mediator. Chem. Phys. Lett. 2018, 691, 373–378. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Athanassov, Y.; Armand, M.; Bonho⁁te, P.; Pettersson, H.; Azam, A.; Grätzel, M. The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications. J. Electrochem. Soc. 1996, 143, 3099–3108. [Google Scholar] [CrossRef]
- Bai, Y.; Cao, Y.; Zhang, J.; Wang, M.; Li, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. High-performance dye-Sensitized solar cells based on solvent-Free electrolytes produced from eutectic melts. Nat. Mater. 2008, 7, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S.M.; Grätzel, M.; Wang, P. Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. J. Phys. Chem. C 2008, 112, 13775–13781. [Google Scholar] [CrossRef]
- Gorlov, M.; Kloo, L. Ionic liquid electrolytes for dye-Sensitized solar cells. Dalton Trans. 2008, 2655–2666. [Google Scholar] [CrossRef]
- Wang, P.; Zakeeruddin, S.M.; Moser, J.-E.; Humphry-Baker, R.; Grätzel, M. A Solvent-Free, SeCN-/(SeCN)3-Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells. J. Am. Chem. Soc. 2004, 126, 7164–7165. [Google Scholar] [CrossRef] [PubMed]
- Santa-Nokki, H.; Busi, S.; Kallioinen, J.; Lahtinen, M.; Korppi-Tommola, J. Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-Sensitized solar cells. J. Photochem. Photobiol. Chem. 2007, 186, 29–33. [Google Scholar] [CrossRef]
- Wang, P.; Zakeeruddin, S.M.; Grätzel, M.; Kantlehner, W.; Mezger, J.; Stoyanov, E.V.; Scherr, O. Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-Sensitized solar cells. Appl. Phys. A 2004, 79, 73–77. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Wu, J.; Zhang, Q.; Luo, Y.; Yu, Z.; Meng, Q.; Wu, Z. Application of a New Cyclic Guanidinium Ionic Liquid on Dye-Sensitized Solar Cells (DSCs). Langmuir 2009, 25, 4808–4814. [Google Scholar] [CrossRef]
- Ramírez, R.E.; Torres-González, L.C.; Sánchez, E.M. Electrochemical Aspects of Asymmetric Phosphonium Ionic Liquids. J. Electrochem. Soc. 2007, 154, B229–B233. [Google Scholar] [CrossRef]
- Sauvage, F.; Chhor, S.; Marchioro, A.; Moser, J.-E.; Graetzel, M. Butyronitrile-Based Electrolyte for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133, 13103–13109. [Google Scholar] [CrossRef] [Green Version]
- Paulsson, H.; Hagfeldt, A.; Kloo, L. Molten and Solid Trialkylsulfonium Iodides and Their Polyiodides as Electrolytes in Dye-Sensitized Nanocrystalline Solar Cells. J. Phys. Chem. B 2003, 107, 13665–13670. [Google Scholar] [CrossRef]
- Paulsson, H.; Berggrund, M.; Svantesson, E.; Hagfeldt, A.; Kloo, L. Molten and solid metal-Iodide-Doped trialkylsulphonium iodides and polyiodides as electrolytes in dye-Sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 2004, 82, 345–360. [Google Scholar] [CrossRef]
- Paulsson, H.; Kloo, L.; Hagfeldt, A.; Boschloo, G. Electron transport and recombination in dye-Sensitized solar cells with ionic liquid electrolytes. J. Electroanal. Chem. 2006, 586, 56–61. [Google Scholar] [CrossRef]
- Xi, C.; Cao, Y.; Cheng, Y.; Wang, M.; Jing, X.; Zakeeruddin, S.M.; Grätzel, M.; Wang, P. Tetrahydrothiophenium-Based Ionic Liquids for High Efficiency Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 11063–11067. [Google Scholar] [CrossRef]
- Pashaei, B.; Shahroosvand, H.; Abbasi, P. Transition metal complex redox shuttles for dye-Sensitized solar cells. RSC Adv. 2015, 5, 94814–94848. [Google Scholar] [CrossRef]
- Wachter, P.; Zistler, M.; Schreiner, C.; Berginc, M.; Krašovec, U.O.; Gerhard, D.; Wasserscheid, P.; Hinsch, A.; Gores, H.J. Characterisation of DSSC-electrolytes based on 1-ethyl-3-methylimidazolium dicyanamide: Measurement of triiodide diffusion coefficient, viscosity, and photovoltaic performance. J. Photochem. Photobiol. Chem. 2008, 197, 25–33. [Google Scholar] [CrossRef]
- Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J.-E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E.V.; Zakeeruddin, S.M.; Grätzel, M. Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. J. Am. Chem. Soc. 2005, 127, 6850–6856. [Google Scholar] [CrossRef]
- Zistler, M.; Schreiner, C.; Wachter, P.; Wasserscheid, P.; Gerhard, D.; Gores, H.J. Electrochemical Characterization of 1-Ethyl-3-methylimidazolium Thiocyanate and Measurement of Triiodide Diffusion Coefficients in Blends of two Ionic Liquids. Int. J. Electrochem. Sci. 2008, 3, 236–245. [Google Scholar]
- Wang, P.; Zakeeruddin, S.M.; Humphry-Baker, R.; Grätzel, M. A Binary Ionic Liquid Electrolyte to Achieve ≥7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells. Chem. Mater. 2004, 16, 2694–2696. [Google Scholar] [CrossRef]
- Shi, D.; Pootrakulchote, N.; Li, R.; Guo, J.; Wang, Y.; Zakeeruddin, S.M.; Grätzel, M.; Wang, P. New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. J. Phys. Chem. C 2008, 112, 17046–17050. [Google Scholar] [CrossRef]
- Chen, X.; Xu, D.; Qiu, L.; Li, S.; Zhang, W.; Yan, F. Imidazolium functionalized TEMPO/iodide hybrid redox couple for highly efficient dye-Sensitized solar cells. J. Mater. Chem. A 2013, 1, 8759–8765. [Google Scholar] [CrossRef]
- Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M. Stable ⩾8% efficient nanocrystalline dye-Sensitized solar cell based on an electrolyte of low volatility. Appl. Phys. Lett. 2005, 86, 123508. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, H.; Chen, X.; Yan, F. Imidazolium functionalized cobalt tris(bipyridyl) complex redox shuttles for high efficiency ionic liquid electrolyte dye-Sensitized solar cells. J. Mater. Chem. A 2013, 1, 11933–11941. [Google Scholar] [CrossRef]
- Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S.M.; Grätzel, M. Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte. J. Am. Chem. Soc. 2006, 128, 7732–7733. [Google Scholar] [CrossRef] [PubMed]
- Photovoltaic Device Performance Calibration Services Home Page. Available online: https://pvdpc.nrel.gov/ (accessed on 10 June 2019).
- Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf (accessed on 10 June 2019).
- Boschloo, G.; Hagfeldt, A. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Pelet, S.; Moser, J.-E.; Grätzel, M. Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2. J. Phys. Chem. B 2000, 104, 1791–1795. [Google Scholar] [CrossRef]
- Feldt, S.M.; Wang, G.; Boschloo, G.; Hagfeldt, A. Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells using Cobalt Polypyridine Redox Couples. J. Phys. Chem. C 2011, 115, 21500–21507. [Google Scholar] [CrossRef]
- Nia, N.Y.; Farahani, P.; Sabzyan, H.; Zendehdel, M.; Oftadeh, M. A combined computational and experimental study of the [Co(bpy)3]2+/3+ complexes as one-Electron outer-Sphere redox couples in dye-Sensitized solar cell electrolyte media. Phys. Chem. Chem. Phys. 2014, 16, 11481–11491. [Google Scholar]
- Mosconi, E.; Yum, J.-H.; Kessler, F.; Gómez García, C.J.; Zuccaccia, C.; Cinti, A.; Nazeeruddin, M.K.; Grätzel, M.; De Angelis, F. Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. J. Am. Chem. Soc. 2012, 134, 19438–19453. [Google Scholar] [CrossRef] [PubMed]
- Feldt, S.M.; Lohse, P.W.; Kessler, F.; Nazeeruddin, M.K.; Grätzel, M.; Boschloo, G.; Hagfeldt, A. Regeneration and recombination kinetics in cobalt polypyridine based dye-Sensitized solar cells, explained using Marcus theory. Phys. Chem. Chem. Phys. 2013, 15, 7087–7097. [Google Scholar] [CrossRef]
- Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Muñoz-García, A.B.; Zakeeruddin, S.M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J. Am. Chem. Soc. 2016, 138, 15087–15096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saygili, Y.; Stojanovic, M.; Michaels, H.; Tiepelt, J.; Teuscher, J.; Massaro, A.; Pavone, M.; Giordano, F.; Zakeeruddin, S.M.; Boschloo, G.; et al. Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Appl. Energy Mater. 2018, 1, 4950–4962. [Google Scholar] [CrossRef]
- Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M. CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. J. Phys. Chem. B 2001, 105, 10461–10464. [Google Scholar] [CrossRef]
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-Sensitized solar cells. Nat. Photonics 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Feldt, S.M.; Gibson, E.A.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2010, 132, 16714–16724. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.J.; Amick, T.J.; Elliott, C.M. Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes. J. Phys. Chem. C 2008, 112, 18255–18263. [Google Scholar] [CrossRef]
- Pham, T.T.T.; Koh, T.M.; Nonomura, K.; Lam, Y.M.; Mathews, N.; Mhaisalkar, S. Reducing Mass-Transport Limitations in Cobalt-Electrolyte-Based Dye-Sensitized Solar Cells by Photoanode Modification. ChemPhysChem 2014, 15, 1216–1221. [Google Scholar] [CrossRef]
- Tsao, H.N.; Comte, P.; Yi, C.; Grätzel, M. Avoiding Diffusion Limitations in Cobalt(III/II)-Tris(2,2′-Bipyridine)-Based Dye-Sensitized Solar Cells by Tuning the Mesoporous TiO2 Film Properties. ChemPhysChem 2012, 13, 2976–2981. [Google Scholar] [CrossRef]
- Cong, J.; Hao, Y.; Boschloo, G.; Kloo, L. Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dye-Sensitized Solar Cells. ChemSusChem 2015, 8, 264–268. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, W.; Zhang, L.; Jiang, R.; Mijangos, E.; Saygili, Y.; Hammarström, L.; Hagfeldt, A.; Boschloo, G. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-Sensitized solar cells. Nat. Commun. 2016, 7, 13934. [Google Scholar] [CrossRef]
- Freitag, M.; Boschloo, G. The revival of dye-Sensitized solar cells. Curr. Opin. Electrochem. 2017, 2, 111–119. [Google Scholar] [CrossRef]
- Kashif, M.K.; Nippe, M.; Duffy, N.W.; Forsyth, C.M.; Chang, C.J.; Long, J.R.; Spiccia, L.; Bach, U. Stable Dye-Sensitized Solar Cell Electrolytes Based on Cobalt(II)/(III) Complexes of a Hexadentate Pyridyl Ligand. Angew. Chem. Int. Ed. 2013, 52, 5527–5531. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Yang, W.; Fredin, L.A.; D’Amario, L.; Karlsson, K.M.; Hagfeldt, A.; Boschloo, G. Supramolecular Hemicage Cobalt Mediators for Dye-Sensitized Solar Cells. ChemPhysChem 2016, 17, 3845–3852. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Giordano, F.; Yang, W.; Pazoki, M.; Hao, Y.; Zietz, B.; Grätzel, M.; Hagfeldt, A.; Boschloo, G. Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120, 9595–9603. [Google Scholar] [CrossRef]
- Freitag, M.; Daniel, Q.; Pazoki, M.; Sveinbjörnsson, K.; Zhang, J.; Sun, L.; Hagfeldt, A.; Boschloo, G. High-efficiency dye-Sensitized solar cells with molecular copper phenanthroline as solid hole conductor. Energy Environ. Sci. 2015, 8, 2634–2637. [Google Scholar] [CrossRef]
- Gregg, B.A.; Pichot, F.; Ferrere, S.; Fields, C.L. Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods to Passivate the Interfaces. J. Phys. Chem. B 2001, 105, 1422–1429. [Google Scholar] [CrossRef]
- Feldt, S.M.; Cappel, U.B.; Johansson, E.M.J.; Boschloo, G.; Hagfeldt, A. Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple. J. Phys. Chem. C 2010, 114, 10551–10558. [Google Scholar] [CrossRef]
- Hamann, T.W.; Farha, O.K.; Hupp, J.T. Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition. J. Phys. Chem. C 2008, 112, 19756–19764. [Google Scholar] [CrossRef] [Green Version]
- Waita, S.M.; Aduda, B.O.; Mwabora, J.M.; Niklasson, G.A.; Granqvist, C.G.; Boschloo, G. Electrochemical characterization of TiO2 blocking layers prepared by reactive DC magnetron sputtering. J. Electroanal. Chem. 2009, 637, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Daeneke, T.; Kwon, T.-H.; Holmes, A.B.; Duffy, N.W.; Bach, U.; Spiccia, L. High-Efficiency dye-Sensitized solar cells with ferrocene-Based electrolytes. Nat. Chem. 2011, 3, 211–215. [Google Scholar] [CrossRef]
- Daeneke, T.; Mozer, A.J.; Kwon, T.-H.; Duffy, N.W.; Holmes, A.B.; Bach, U.; Spiccia, L. Dye regeneration and charge recombination in dye-Sensitized solar cells with ferrocene derivatives as redox mediators. Energy Environ. Sci. 2012, 5, 7090–7099. [Google Scholar] [CrossRef]
- Li, T.C.; Spokoyny, A.M.; She, C.; Farha, O.K.; Mirkin, C.A.; Marks, T.J.; Hupp, J.T. Ni(III)/(IV) Bis(dicarbollide) as a Fast, Noncorrosive Redox Shuttle for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2010, 132, 4580–4582. [Google Scholar] [CrossRef] [PubMed]
- Spokoyny, A.M.; Li, T.C.; Farha, O.K.; Machan, C.W.; She, C.; Stern, C.L.; Marks, T.J.; Hupp, J.T.; Mirkin, C.A. Electronic Tuning of Nickel-Based Bis(dicarbollide) Redox Shuttles in Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2010, 49, 5339–5343. [Google Scholar] [CrossRef] [PubMed]
- Li, T.C.; Fabregat-Santiago, F.; Farha, O.K.; Spokoyny, A.M.; Raga, S.R.; Bisquert, J.; Mirkin, C.A.; Marks, T.J.; Hupp, J.T. SiO2 Aerogel Templated, Porous TiO2 Photoanodes for Enhanced Performance in Dye-Sensitized Solar Cells Containing a Ni(III)/(IV) Bis(dicarbollide) Shuttle. J. Phys. Chem. C 2011, 115, 11257–11264. [Google Scholar] [CrossRef]
- Wang, Y. Recent research progress on polymer electrolytes for dye-Sensitized solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1167–1175. [Google Scholar] [CrossRef]
- Freitas, J.N.; de Nogueira, A.F.; Paoli, M.-A.D. New insights into dye-Sensitized solar cells with polymer electrolytes. J. Mater. Chem. 2009, 19, 5279–5294. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Longo, C.; De Paoli, M.-A. Polymers in dye sensitized solar cells: Overview and perspectives. Coord. Chem. Rev. 2004, 248, 1455–1468. [Google Scholar] [CrossRef]
- Hallinan, D.T.; Balsara, N.P. Polymer Electrolytes. Annu. Rev. Mater. Res. 2013, 43, 503–525. [Google Scholar] [CrossRef]
- Song, J.Y.; Wang, Y.Y.; Wan, C.C. Review of gel-type polymer electrolytes for lithium-Ion batteries. J. Power Sources 1999, 77, 183–197. [Google Scholar] [CrossRef]
- Song, D.; Cho, W.; Lee, J.H.; Kang, Y.S. Toward Higher Energy Conversion Efficiency for Solid Polymer Electrolyte Dye-Sensitized Solar Cells: Ionic Conductivity and TiO2 Pore-Filling. J. Phys. Chem. Lett. 2014, 5, 1249–1258. [Google Scholar] [CrossRef]
- Ngai, K.S.; Ramesh, S.; Ramesh, K.; Juan, J.C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279. [Google Scholar] [CrossRef]
- Ileperuma, O.A. Gel polymer electrolytes for dye sensitised solar cells: A review. Mater. Technol. 2013, 28, 65–70. [Google Scholar] [CrossRef]
- Yun, S.; Freitas, J.N.; Nogueira, A.F.; Wang, Y.; Ahmad, S.; Wang, Z.-S. Dye-Sensitized solar cells employing polymers. Prog. Polym. Sci. 2016, 59, 1–40. [Google Scholar] [CrossRef]
- Liu, I.-P.; Hung, W.-N.; Teng, H.; Venkatesan, S.; Lin, J.-C.; Lee, Y.-L. High-Performance printable electrolytes for dye-Sensitized solar cells. J. Mater. Chem. A 2017, 5, 9190–9197. [Google Scholar] [CrossRef]
- Seo, S.-J.; Cha, H.-J.; Kang, Y.S.; Kang, M.-S. Printable ternary component polymer-gel electrolytes for long-term stable dye-Sensitized solar cells. Electrochim. Acta 2014, 145, 217–223. [Google Scholar] [CrossRef]
- Venkatesan, S.; Su, S.-C.; Hung, W.-N.; Liu, I.-P.; Teng, H.; Lee, Y.-L. Printable electrolytes based on polyacrylonitrile and gamma-Butyrolactone for dye-Sensitized solar cell application. J. Power Sources 2015, 298, 385–390. [Google Scholar] [CrossRef]
- Venkatesan, S.; Surya Darlim, E.; Tsai, M.-H.; Teng, H.; Lee, Y.-L. Graphene Oxide Sponge as Nanofillers in Printable Electrolytes in High-Performance Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 10955–10964. [Google Scholar] [CrossRef] [PubMed]
- 20Wang, C.; Wang, L.; Shi, Y.; Zhang, H.; Ma, T. Printable electrolytes for highly efficient quasi-solid-state dye-Sensitized solar cells. Electrochim. Acta 2013, 91, 302–306. [Google Scholar]
- Lee, H.-F.; Kai, J.-J.; Liu, P.-C.; Chang, W.-C.; Ouyang, F.-Y.; Chan, H.-T. A comparative study of charge transport in quasi-Solid state dye-Sensitized solar cells using polymer or nanocomposite gel electrolytes. J. Electroanal. Chem. 2012, 687, 45–50. [Google Scholar] [CrossRef]
- 2Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-Based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Wu, J.H.; Hao, S.C.; Lan, Z.; Lin, J.M.; Huang, M.L.; Huang, Y.F.; Fang, L.Q.; Yin, S.; Sato, T. A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2007, 17, 2645–2652. [Google Scholar] [CrossRef]
- Wu, J.H.; Lan, Z.; Lin, J.M.; Huang, M.L.; Hao, S.C.; Sato, T.; Yin, S. A Novel Thermosetting Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells. Adv. Mater. 2007, 19, 4006–4011. [Google Scholar] [CrossRef]
- Marchezi, P.E.; Sonai, G.G.; Hirata, M.K.; Schiavon, M.A.; Nogueira, A.F. Understanding the Role of Reduced Graphene Oxide in the Electrolyte of Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120, 23368–23376. [Google Scholar] [CrossRef]
- Mohan, K.; Dolui, S.; Nath, B.C.; Bora, A.; Sharma, S.; Dolui, S.K. A highly stable and efficient quasi solid state dye sensitized solar cell based on Polymethyl methacrylate (PMMA)/Carbon black (CB) polymer gel electrolyte with improved open circuit voltage. Electrochim. Acta 2017, 247, 216–228. [Google Scholar] [CrossRef]
- Neo, C.Y.; Gopalan, N.K.; Ouyang, J. Graphene oxide/multi-walled carbon nanotube nanocomposites as the gelator of gel electrolytes for quasi-Solid state dye-Sensitized solar cells. J. Mater. Chem. A 2014, 2, 9226–9235. [Google Scholar] [CrossRef]
- Su’ait, M.S.; Rahman, M.Y.A.; Ahmad, A. Review on polymer electrolyte in dye-Sensitized solar cells (DSSCs). Sol. Energy 2015, 115, 452–470. [Google Scholar] [CrossRef]
- Tiautit, N.; Puratane, C.; Panpinit, S.; Saengsuwan, S. Effect of SiO2 and TiO2 Nanoparticles on the Performance of Dye-Sensitized Solar Cells Using PVDF-HFP/PVA Gel Electrolytes. Energy Procedia 2014, 56, 378–385. [Google Scholar] [CrossRef]
- Aziz, M.F.; Buraidah, M.H.; Careem, M.A.; Arof, A.K. PVA based gel polymer electrolytes with mixed iodide salts (K+I− and Bu4N+I−) for dye-Sensitized solar cell application. Electrochim. Acta 2015, 182, 217–223. [Google Scholar] [CrossRef]
- Jin, L.; Liu, T.; Wang, C. Ionic gel electrolytes composite with SiO2 nanoparticles for quasi-Solid-State dye-Sensitized solar cells. Appl. Phys. A 2016, 122, 606. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, M.; Howlett, P.C.; Kar, M.; Passerini, S.; Pringle, J.M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W.; et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 15005. [Google Scholar] [CrossRef]
- Manuel Stephan, A. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Teng, H.; Lee, Y.-L. In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells. Adv. Mater. 2011, 23, 4199–4204. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, M.; Wu, J.; Lan, Z.; Hao, S.; Lin, J. The polymer gel electrolyte based on poly (Methyl methacrylate) and its application in quasi-solid-state dye-Sensitized solar cells. Mater. Chem. Phys. 2008, 110, 38–42. [Google Scholar] [CrossRef]
- Cao, F.; Oskam, G.; Searson, P.C. A Solid State, Dye Sensitized Photoelectrochemical Cell. J. Phys. Chem. 1995, 99, 17071–17073. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Alonso-Vante, N.; De Paoli, M.-A. Solid-state photoelectrochemical device using poly (o-methoxy aniline) as sensitizer and an ionic conductive elastomer as electrolyte. Synth. Met. 1999, 105, 23–27. [Google Scholar] [CrossRef]
- Nogueira, A.F.; De Paoli, M.-A. A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte. Sol. Energy Mater. Sol. Cells 2000, 61, 135–141. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. Gel Polymer Electrolytes for Electrochemical Energy Storage. Adv. Energy Mater. 2018, 8, 1702184. [Google Scholar] [CrossRef]
- Benedetti, J.E.; Gonçalves, A.D.; Formiga, A.L.B.; De Paoli, M.-A.; Li, X.; Durrant, J.R.; Nogueira, A.F. A polymer gel electrolyte composed of a poly (Ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-Sensitized solar cells. J. Power Sources 2010, 195, 1246–1255. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, Z.; Fang, S.; Yang, M.; Cai, S. Application of PEO based gel network polymer electrolytes in dye-Sensitized photoelectrochemical cells. Sol. Energy Mater. Sol. Cells 2002, 71, 253–259. [Google Scholar] [CrossRef]
- Sonai, G.G.; Tiihonen, A.; Miettunen, K.; Lund, P.D.; Nogueira, A.F. Long-Term Stability of Dye-Sensitized Solar Cells Assembled with Cobalt Polymer Gel Electrolyte. J. Phys. Chem. C 2017, 121, 17577–17585. [Google Scholar] [CrossRef]
- Xia, J.; Li, F.; Huang, C.; Zhai, J.; Jiang, L. Improved stability quasi-Solid-State dye-Sensitized solar cell based on polyether framework gel electrolytes. Sol. Energy Mater. Sol. Cells 2006, 90, 944–952. [Google Scholar] [CrossRef]
- Shi, Y.; Zhan, C.; Wang, L.; Ma, B.; Gao, R.; Zhu, Y.; Qiu, Y. The electrically conductive function of high-molecular weight poly (Ethylene oxide) in polymer gel electrolytes used for dye-Sensitized solar cells. Phys. Chem. Chem. Phys. 2009, 11, 4230–4235. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, N.; Velayutham, D.; Sorrentino, A.; Anandan, S. Poly (Ethylene oxide) polymer matrix coupled with urea as gel electrolyte for dye sensitized solar cell applications. Synth. Met. 2017, 226, 62–70. [Google Scholar] [CrossRef]
- Lee, K.-M.; Suryanarayanan, V.; Ho, K.-C. High efficiency quasi-Solid-State dye-Sensitized solar cell based on polyvinyidene fluoride-Co-Hexafluoro propylene containing propylene carbonate and acetonitrile as plasticizers. J. Photochem. Photobiol. Chem. 2009, 207, 224–230. [Google Scholar] [CrossRef]
- Noor, M.M.; Buraidah, M.H.; Yusuf, S.N.F.; Careem, M.A.; Majid, S.R.; Arof, A.K. Performance of Dye-Sensitized Solar Cells with (PVDF-HFP)-KI-EC-PC Electrolyte and Different Dye Materials. Int. J. Photoenergy 2011, 2011, 960487. [Google Scholar] [CrossRef]
- Venkatesan, S.; Obadja, N.; Chang, T.-W.; Chen, L.-T.; Lee, Y.-L. Performance improvement of gel- and solid-State dye-Sensitized solar cells by utilization the blending effect of poly (vinylidene fluoride-co-hexafluropropylene) and poly (acrylonitrile-co-vinyl acetate) co-Polymers. J. Power Sources 2014, 268, 77–81. [Google Scholar] [CrossRef]
- Won, L.J.; Kim, J.H.; Thogiti, S. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend. Electron. Mater. Lett. 2018, 14, 342–347. [Google Scholar] [CrossRef]
- Hwang, D.-K.; Nam, J.E.; Jo, H.J.; Sung, S.-J. Quasi-Solid state electrolyte for semi-Transparent bifacial dye-Sensitized solar cell with over 10% power conversion efficiency. J. Power Sources 2017, 361, 87–95. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef]
- Achari, M.B.; Elumalai, V.; Vlachopoulos, N.; Safdari, M.; Gao, J.; Gardner, J.M.; Kloo, L. A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-Sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 17419–17425. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Ahn, K.-S.; Thogiti, S.; Kim, J.H. Mass transport effect on the photovoltaic performance of ruthenium-based quasi-Solid dye sensitized solar cells using cobalt based redox couples. Dyes Pigments 2015, 117, 83–91. [Google Scholar] [CrossRef]
- Xiang, W.; Huang, W.; Bach, U.; Spiccia, L. Stable high efficiency dye-Sensitized solar cells based on a cobalt polymer gel electrolyte. Chem. Commun. 2013, 49, 8997–8999. [Google Scholar] [CrossRef] [PubMed]
- Suzuka, M.; Hayashi, N.; Sekiguchi, T.; Sumioka, K.; Takata, M.; Hayo, N.; Ikeda, H.; Oyaizu, K.; Nishide, H. A Quasi-Solid State DSSC with 10.1% Efficiency through Molecular Design of the Charge-Separation and-Transport. Sci. Rep. 2016, 6, 28022. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A. Recent research progress on quasi-solid-state electrolytes for dye-Sensitized solar cells. J. Energy Chem. 2015, 24, 686–692. [Google Scholar] [CrossRef]
- Wang, L.; Fang, S.; Lin, Y.; Zhou, X.; Li, M. A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-Linked gel electrolyte precursors. Chem. Commun. 2005, 5687–5689. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, J.E.; Corrêa, A.A.; Carmello, M.; Almeida, L.C.P.; Gonçalves, A.S.; Nogueira, A.F. Cross-Linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-Sensitized solar cells. J. Power Sources 2012, 208, 263–270. [Google Scholar] [CrossRef]
- Shen, S.-Y.; Dong, R.-X.; Shih, P.-T.; Ramamurthy, V.; Lin, J.-J.; Ho, K.-C. Novel Polymer Gel Electrolyte with Organic Solvents for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 18489–18496. [Google Scholar] [CrossRef]
- Yin, X.; Tan, W.; Xiang, W.; Lin, Y.; Zhang, J.; Xiao, X.; Li, X.; Zhou, X.; Fang, S. Novel chemically cross-Linked solid state electrolyte for dye-Sensitized solar cells. Electrochim. Acta 2010, 55, 5803–5807. [Google Scholar] [CrossRef]
- Bella, F.; Ozzello, E.D.; Bianco, S.; Bongiovanni, R. Photo-polymerization of acrylic/methacrylic gel–polymer electrolyte membranes for dye-Sensitized solar cells. Chem. Eng. J. 2013, 225, 873–879. [Google Scholar] [CrossRef]
- Bella, F.; Bongiovanni, R. Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-Sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2013, 16, 1–21. [Google Scholar] [CrossRef]
- Parvez, M.K.; In, I.; Park, J.M.; Lee, S.H.; Kim, S.R. Long-term stable dye-Sensitized solar cells based on UV photo-crosslinkable poly (Ethylene glycol) and poly (Ethylene glycol) diacrylate based electrolytes. Sol. Energy Mater. Sol. Cells 2011, 95, 318–322. [Google Scholar] [CrossRef]
- Chuang, P.-Y.; Chang, L.-Y.; Chuang, C.-N.; Chen, S.-H.; Lin, J.-J.; Ho, K.-C.; Hsieh, K.-H. A Novel Gel Electrolyte Based on Polyurethane for Highly Efficient in Dye-Sensitized Solar Cells. J. Polym. Res. 2016, 23, 214. [Google Scholar] [CrossRef]
- Lan, Z.; Wu, J.; Lin, J.; Huang, M. Quasi-solid-state dye-Sensitized solar cells with a novel efficient absorbent for liquid electrolyte based on PAA–PEG hybrid. J. Power Sources 2007, 164, 921–925. [Google Scholar] [CrossRef]
- Matsumoto, M.; Wada, Y.; Kitamura, T.; Shigaki, K.; Inoue, T.; Ikeda, M.; Yanagida, S. Fabrication of Solid-State Dye-Sensitized TiO2 Solar Cell Using Polymer Electrolyte. Bull. Chem. Soc. Jpn. 2001, 74, 387–393. [Google Scholar] [CrossRef]
- Dong, R.-X.; Shen, S.-Y.; Chen, H.-W.; Wang, C.-C.; Shih, P.-T.; Liu, C.-T.; Vittal, R.; Lin, J.-J.; Ho, K.-C. A novel polymer gel electrolyte for highly efficient dye-Sensitized solar cells. J. Mater. Chem. A 2013, 1, 8471–8478. [Google Scholar] [CrossRef]
- Yang, H.; Ileperuma, O.A.; Shimomura, M.; Murakami, K. Effect of ultra-thin polymer membrane electrolytes on dye-Sensitized solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1083–1086. [Google Scholar] [CrossRef]
- Park, S.-H.; Lim, J.; Kwon, Y.S.; Song, I.Y.; Choi, J.M.; Song, S.; Park, T. Tunable Nanoporous Network Polymer Nanocomposites having Size-Selective Ion Transfer for Dye-Sensitized Solar Cells. Adv. Energy Mater. 2013, 3, 183. [Google Scholar] [CrossRef]
- Bella, F.; Vlachopoulos, N.; Nonomura, K.; Zakeeruddin, S.M.; Grätzel, M.; Gerbaldi, C.; Hagfeldt, A. Direct light-induced polymerization of cobalt-based redox shuttles: An ultrafast way towards stable dye-Sensitized solar cells. Chem. Commun. 2015, 51, 16308–16311. [Google Scholar] [CrossRef]
- Zhang, K.; Cui, Z.; Xing, G.; Feng, Y.; Meng, S. Improved performance of dye-Sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes. RSC Adv. 2016, 6, 100079–100089. [Google Scholar] [CrossRef]
- Chang, W.-C.; Sie, S.-Y.; Yu, W.-C.; Lin, L.-Y.; Yu, Y.-J. Preparation of Nano-composite Gel Electrolytes with Metal Oxide Additives for Dye-Sensitized Solar Cells. Electrochim. Acta 2016, 212, 333–342. [Google Scholar] [CrossRef]
- Bella, F.; Popovic, J.; Lamberti, A.; Tresso, E.; Gerbaldi, C.; Maier, J. Interfacial Effects in Solid–Liquid Electrolytes for Improved Stability and Performance of Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 37797–37803. [Google Scholar] [CrossRef] [PubMed]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456. [Google Scholar] [CrossRef]
- Chen, C.-L.; Chang, T.-W.; Teng, H.; Wu, C.-G.; Chen, C.-Y.; Yang, Y.-M.; Lee, Y.-L. Highly efficient gel-state dye-Sensitized solar cells prepared using poly (Acrylonitrile-Co-Vinyl acetate) based polymer electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Zebardastan, N.; Khanmirzaei, M.H.; Ramesh, S.; Ramesh, K. Novel poly (Vinylidene fluoride-Co-Hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-Sensitized solar cell. Electrochim. Acta 2016, 220, 573–580. [Google Scholar] [CrossRef]
- Stergiopoulos, T.; Bidikoudi, M.; Likodimos, V.; Falaras, P. Dye-Sensitized solar cells incorporating novel Co(II/III) based-redox electrolytes solidified by silica nanoparticles. J. Mater. Chem. 2012, 22, 24430–24438. [Google Scholar] [CrossRef]
- Chi, C.-H.; Hsu, Y.-C.; Tseng, L.-C.; Suen, S.-Y.; Wu, J.-Y.; Lee, R.-H. Carbon nanotube and graphite oxide surfaces modified with polyethylene oxide for dye-Sensitized solar cells. J. Polym. Res. 2013, 20, 269. [Google Scholar] [CrossRef]
- Neo, C.Y.; Ouyang, J. Ethyl cellulose and functionalized carbon nanotubes as a co-Gelator for high-Performance quasi-Solid state dye-Sensitized solar cells. J. Mater. Chem. A 2013, 1, 14392–14401. [Google Scholar] [CrossRef]
- Brennan, L.J.; Byrne, M.T.; Bari, M.; Gun’ko, Y.K. Carbon Nanomaterials for Dye-Sensitized Solar Cell Applications: A Bright Future. Adv. Energy Mater. 2011, 1, 472–485. [Google Scholar] [CrossRef]
- Mohan, V.M.; Murakami, K.; Kono, A.; Shimomura, M. Poly(acrylonitrile)/activated carbon composite polymer gel electrolyte for high efficiency dye sensitized solar cells. J. Mater. Chem. A 2013, 1, 7399–7407. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Huang, K.-C.; Dong, R.-X.; Liu, C.-T.; Wang, C.-C.; Ho, K.-C.; Lin, J.-J. Polymer-dispersed MWCNT gel electrolytes for high performance of dye-Sensitized solar cells. J. Mater. Chem. 2012, 22, 6982–6989. [Google Scholar] [CrossRef]
- Gun, J.; Kulkarni, S.A.; Xiu, W.; Batabyal, S.K.; Sladkevich, S.; Prikhodchenko, P.V.; Gutkin, V.; Lev, O. Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells. Electrochem. Commun. 2012, 19, 108–110. [Google Scholar] [CrossRef]
- Zheng, J. Graphene tailored polymer gel electrolytes for 9.1%-efficiency quasi-solid-state dye-Sensitized solar cells. J. Power Sources 2017, 348, 239–245. [Google Scholar] [CrossRef]
- Syairah, A.; Khanmirzaei, M.H.; Saidi, N.M.; Farhana, N.K.; Ramesh, S.; Ramesh, K.; Ramesh, S. Effect of different imidazolium-based ionic liquids on gel polymer electrolytes for dye-Sensitized solar cells. Ionics 2019, 25, 2427–2435. [Google Scholar] [CrossRef]
- Lau, G.P.S.; Décoppet, J.-D.; Moehl, T.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. Robust High-performance Dye-Sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes. Sci. Rep. 2015, 5, 18158. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-H.; Wang, T.-L.; Lin, W.-C.; Lin, H.-Y.; Lee, M.-H.; Yang, C.-H. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors. Nanomaterials 2018, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zakeeruddin, S.M.; Comte, P.; Exnar, I.; Grätzel, M. Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2003, 125, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zakeeruddin, S.M.; Exnar, I.; Grätzel, M. High efficiency dye-Sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 2002, 2972–2973. [Google Scholar] [CrossRef]
- Chi, W.S.; Roh, D.K.; Kim, S.J.; Heo, S.Y.; Kim, J.H. Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-Sensitized solar cells. Nanoscale 2013, 5, 5341–5348. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-S.; Ahn, K.-S.; Lee, J.-W. Quasi-solid-state dye-Sensitized solar cells employing ternary component polymer-gel electrolytes. J. Power Sources 2008, 180, 896–901. [Google Scholar] [CrossRef]
- Buraidah, M.H.; Shah, S.; Teo, L.P.; Chowdhury, F.I.; Careem, M.A.; Albinsson, I.; Mellander, B.-E.; Arof, A.K. High efficient dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes. Electrochim. Acta 2017, 245, 846–853. [Google Scholar] [CrossRef]
- Wang, X.; Kulkarni, S.A.; Ito, B.I.; Batabyal, S.K.; Nonomura, K.; Wong, C.C.; Grätzel, M.; Mhaisalkar, S.G.; Uchida, S. Nanoclay Gelation Approach toward Improved Dye-Sensitized Solar Cell Efficiencies: An Investigation of Charge Transport and Shift in the TiO2 Conduction Band. ACS Appl. Mater. Interfaces 2013, 5, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Liu, K.-Y.; Chang, S.-H.; Lin, K.-J.; Lin, J.-J.; Ho, K.-C.; Lin, K.-F. Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-Sensitized solar cells. J. Colloid Interface Sci. 2011, 363, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Sakali, S.M.; Khanmirzaei, M.H.; Lu, S.C.; Ramesh, S.; Ramesh, K. Investigation on gel polymer electrolyte-based dye-Sensitized solar cells using carbon nanotube. Ionics 2019, 25, 319–325. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Jin, X.; Chen, Z. PEDOT and derivatives tailored conducting gel electrolytes for high-efficiency quasi-solid-state dye-Sensitized solar cells. Electrochim. Acta 2018, 260, 413–419. [Google Scholar] [CrossRef]
- Pang, H.-W.; Yu, H.-F.; Huang, Y.-J.; Li, C.-T.; Ho, K.-C. Electrospun membranes of imidazole-grafted PVDF-HFP polymeric ionic liquids for highly efficient quasi-solid-state dye-Sensitized solar cells. J. Mater. Chem. A 2018, 6, 14215–14223. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Li, C.-T.; Lee, C.-P.; Leu, Y.-A.; Ezhumalai, Y.; Vittal, R.; Chen, M.-C.; Lin, J.-J.; Ho, K.-C. Multifunctional Iodide-Free Polymeric Ionic Liquid for Quasi-Solid-State Dye-Sensitized Solar Cells with a High Open-Circuit Voltage. ACS Appl. Mater. Interfaces 2016, 8, 15267–15278. [Google Scholar] [CrossRef]
- Ma’alinia, A.; Moghaddam, H.A.; Nouri, E.; Mohammadi, M.R. Long-term stability of dye-Sensitized solar cells using a facile gel polymer electrolyte. New J. Chem. 2018, 42, 13256–13262. [Google Scholar] [CrossRef]
- Li, J.; Lv, K.; Sun, H.; Wang, Z.-S. Effect of substituents in the imidazolium ring on the performance of solid-State dye-Sensitized solar cells. Nano 2014, 09, 1440006. [Google Scholar] [CrossRef]
- Wang, P.; Dai, Q.; Zakeeruddin, S.M.; Forsyth, M.; MacFarlane, D.R.; Grätzel, M. Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell. J. Am. Chem. Soc. 2004, 126, 13590–13591. [Google Scholar] [CrossRef]
- Lee, B.; Stoumpos, C.C.; Zhou, N.; Hao, F.; Malliakas, C.; Yeh, C.-Y.; Marks, T.J.; Kanatzidis, M.G.; Chang, R.P.H. Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs2SnI6 as a Hole Conductor. J. Am. Chem. Soc. 2014, 136, 15379–15385. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-L.; Yi, C.; Nazeeruddin, M.K.; Grätzel, M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133, 18042–18045. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Gabrielsson, E.; Safdari, M.; Cheng, M.; Hua, Y.; Tian, H.; Gardner, J.M.; Kloo, L.; Sun, L. 1,1,2,2-Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Adv. Energy Mater. 2015, 5, 1402340. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R.H.; MacKenzie, J.D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. Science 2001, 293, 1119–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, N.; Kawano, R.; Kubo, W.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. Ionic liquid crystal as a hole transport layer of dye-Sensitized solar cells. Chem. Commun. 2005, 0, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.D.; Werner, F.; Wang, X.; Grönninger, P.; Feihl, S.; Kohler, F.T.U.; Wasserscheid, P.; Hibler, S.; Beranek, R.; Meyer, K.; et al. Beneficial Effects of Liquid Crystalline Phases in Solid-State Dye-Sensitized Solar Cells. Adv. Energy Mater. 2013, 3, 657–665. [Google Scholar] [CrossRef]
- Högberg, D.; Soberats, B.; Uchida, S.; Yoshio, M.; Kloo, L.; Segawa, H.; Kato, T. Nanostructured Two-Component Liquid-Crystalline Electrolytes for High-Temperature Dye-Sensitized Solar Cells. Chem. Mater. 2014, 26, 6496–6502. [Google Scholar] [CrossRef]
- Högberg, D.; Soberats, B.; Yatagai, R.; Uchida, S.; Yoshio, M.; Kloo, L.; Segawa, H.; Kato, T. Liquid-Crystalline Dye-Sensitized Solar Cells: Design of Two-Dimensional Molecular Assemblies for Efficient Ion Transport and Thermal Stability. Chem. Mater. 2016, 28, 6493–6500. [Google Scholar] [CrossRef]
- Wang, G.; Yan, C.; Zhang, J.; Hou, S.; Zhang, W. Highly efficient solid-State dye-Sensitized solar cells based on hexylimidazolium iodide ionic polymer electrolyte prepared by in situ low-Temperature polymerization. J. Power Sources 2017, 345, 131–136. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Wei, W.; Lee, T.K.; Kim, B.S.; Park, S.C.; Lee, S.; Suh, E.H.; Jang, J.; Bisquert, J.; Kang, Y.S. Imidazolium Iodide-Doped PEDOT Nanofibers as Conductive Catalysts for Highly Efficient Solid-State Dye-Sensitized Solar Cells Employing Polymer Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 2537–2545. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Gong, F.; Zhou, G.; Wang, Z.-S. Novel Ester-Functionalized Solid-State Electrolyte for Highly Efficient All-Solid-State Dye-Sensitized Solar Cells. Adv. Mater. 2012, 24, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Gong, F.; Zhou, G.; Wang, Z.-S. Ionic Conductor with High Conductivity as Single-Component Electrolyte for Efficient Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2013, 135, 12627–12633. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Kim, D.Y.; Jo, S.M.; Armel, V.; MacFarlane, D.R.; Kim, D.; Jang, S.-Y. Highly Efficient Plastic Crystal Ionic Conductors for Solid-State Dye-Sensitized Solar Cells. Sci. Rep. 2013, 3, 3520. [Google Scholar] [CrossRef] [PubMed]
- Tennakone, K.; Kumara, G.R.R.A.; Kumarasinghe, A.R.; Wijayantha, K.G.U.; Sirimanne, P.M. A dye-Sensitized nano-Porous solid-State photovoltaic cell. Semicond. Sci. Technol. 1995, 10, 1689–1693. [Google Scholar] [CrossRef]
- Tennakone, K.; Kumara, G.R.R.A.; Kottegoda, I.R.M.; Wijayantha, K.G.U.; Perera, V.P.S. A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. J. Phys. Appl. Phys. 1998, 31, 1492–1496. [Google Scholar] [CrossRef]
- Premalal, E.V.A.; Dematage, N.; Kumara, G.R.R.A.; Rajapakse, R.M.G.; Shimomura, M.; Murakami, K.; Konno, A. Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-Sensitized solid-State solar cells. J. Power Sources 2012, 203, 288–296. [Google Scholar] [CrossRef]
- Chappaz-Gillot, C.; Berson, S.; Salazar, R.; Lechêne, B.; Aldakov, D.; Delaye, V.; Guillerez, S.; Ivanova, V. Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer. Sol. Energy Mater. Sol. Cells 2014, 120, 163–167. [Google Scholar] [CrossRef]
- Ma, S.; Shang, M.; Yu, L.; Dong, L. Device optimization of CsSnI2.95F0.05-Based all-Solid-State dye-Sensitized solar cells with non-Linear charge-Carrier-Density dependent photovoltaic behaviors. J. Mater. Chem. A 2014, 3, 1222–1229. [Google Scholar] [CrossRef]
- Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer. Chem. Lett. 1997, 26, 471–472. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-Sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.X.; Zhai, J.; Wan, M.X.; Jiang, L.; Zhu, D.B. Polyaniline as a hole transport material to prepare solid solar cells. Synth. Met. 2003, 137. [Google Scholar] [CrossRef]
- Duan, Y.; Tang, Q.; Chen, Y.; Zhao, Z.; Lv, Y.; Hou, M.; Yang, P.; He, B.; Yu, L. Solid-state dye-Sensitized solar cells from poly (Ethylene oxide)/polyaniline electrolytes with catalytic and hole-Transporting characteristics. J. Mater. Chem. A 2015, 3, 5368–5374. [Google Scholar] [CrossRef]
- Kudo, N.; Honda, S.; Shimazaki, Y.; Ohkita, H.; Ito, S.; Benten, H. Improvement of charge injection efficiency in organic-Inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules. Appl. Phys. Lett. 2007, 90, 183513. [Google Scholar] [CrossRef]
- Schaffer, C.J.; Palumbiny, C.M.; Niedermeier, M.A.; Jendrzejewski, C.; Santoro, G.; Roth, S.V.; Müller-Buschbaum, P. A Direct Evidence of Morphological Degradation on a Nanometer Scale in Polymer Solar Cells. Adv. Mater. 2013, 25, 6760–6764. [Google Scholar] [CrossRef] [PubMed]
- Chevrier, M.; Hawashin, H.; Richeter, S.; Mehdi, A.; Surin, M.; Lazzaroni, R.; Dubois, P.; Ratier, B.; Bouclé, J.; Clément, S. Well-designed poly(3-hexylthiophene) as hole transporting material: A new opportunity for solid-State dye-Sensitized solar cells. Synth. Met. 2017, 226, 157–163. [Google Scholar] [CrossRef]
- Li, X.; Xu, B.; Liu, P.; Hu, Y.; Kloo, L.; Hua, J.; Sun, L.; Tian, H. Molecular engineering of D–A–π–A sensitizers for highly efficient solid-State dye-Sensitized solar cells. J. Mater. Chem. A 2017, 5, 3157–3166. [Google Scholar] [CrossRef]
- Kato, T.; Yoshio, M.; Ichikawa, T.; Soberats, B.; Ohno, H.; Funahashi, M. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater. 2017, 2, 17001. [Google Scholar] [CrossRef]
- Bushby, R.J.; Kawata, K. Liquid crystals that affected the world: Discotic liquid crystals. Liq. Cryst. 2011, 38, 1415–1426. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Review of recent progress in solid-State dye-Sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 549–573. [Google Scholar] [CrossRef]
- Yanagida, S.; Yu, Y.; Manseki, K. Iodine/Iodide-Free Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1827–1838. [Google Scholar] [CrossRef]
- Smestad, G.P.; Spiekermann, S.; Kowalik, J.; Grant, C.D.; Schwartzberg, A.M.; Zhang, J.; Tolbert, L.M.; Moons, E. A technique to compare polythiophene solid-State dye sensitized TiO2 solar cells to liquid junction devices. Sol. Energy Mater. Sol. Cells 2003, 76, 85–105. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Solid-State Dye-Sensitized Solar Cells Incorporating Molecular Hole-Transporters. In Dye-Sensitized Solar Cells; Taylor & Francis: Lausanne, Switzerland, 2010; ISBN 978-1-4398-0866-5. [Google Scholar]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2005, 105, 1021. [Google Scholar] [CrossRef]
- Kroeze, J.E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S.D.; Carr, K.; Grätzel, M.; Durrant, J.R. Parameters Influencing Charge Separation in Solid-State Dye-Sensitized Solar Cells Using Novel Hole Conductors. Adv. Funct. Mater. 2006, 16, 1832–1838. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; Grätzel, M. TiO2 pore-Filling and its effect on the efficiency of solid-State dye-Sensitized solar cells. Thin Solid Films 2006, 500, 296–301. [Google Scholar] [CrossRef]
- Li, D.; Qin, D.; Deng, M.; Luo, Y.; Meng, Q. Optimization the solid-State electrolytes for dye-Sensitized solar cells. Energy Environ. Sci. 2009, 2, 283–291. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, Y.; Yin, X.; Liu, B. Solid-State Dye-Sensitized Solar Cells with Conjugated Polymers as Hole-Transporting Materials. Macromol. Chem. Phys. 2011, 212, 15–23. [Google Scholar] [CrossRef]
- Kumara, G.R.R.A.; Konno, A.; Senadeera, G.K.R.; Jayaweera, P.V.V.; De Silva, D.B.R.A.; Tennakone, K. Dye-Sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-Propyl sulphide. Sol. Energy Mater. Sol. Cells 2001, 69, 195–199. [Google Scholar] [CrossRef]
- Mishra, A.; Rana, T.; Looser, A.; Stolte, M.; Würthner, F.; Bäuerle, P.; Sharma, G.D. High performance A–D–A oligothiophene-Based organic solar cells employing two-Step annealing and solution-Processable copper thiocyanate (CuSCN) as an interfacial hole transporting layer. J. Mater. Chem. A 2016, 4, 17344–17353. [Google Scholar] [CrossRef]
- Chaudhary, N.; Chaudhary, R.; Kesari, J.P.; Patra, A. An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells. Opt. Mater. 2017, 69, 367–371. [Google Scholar] [CrossRef]
- Tennakone, K.; Kumara, G.R.R.A.; Wijayantha, K.G.U.; Kottegoda, I.R.M.; Perera, V.P.S.; Aponsu, G.M.L.P. A nanoporous solid-state photovoltaic cell sensitized with copper chlorophyllin. J. Photochem. Photobiol. Chem. 1997, 108, 175–177. [Google Scholar] [CrossRef]
- Tennakone, K.; Perera, V.P.S.; Kottegoda, I.R.M.; Kumara, G.R.R.A. Dye-Sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films. J. Phys. Appl. Phys. 1999, 32, 374–379. [Google Scholar] [CrossRef]
- Kumara, G.R.A.; Konno, A.; Shiratsuchi, K.; Tsukahara, J.; Tennakone, K. Dye-Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for Deposition of the Hole Collector. Chem. Mater. 2002, 14, 954–955. [Google Scholar] [CrossRef]
- Kumara, G.R.A.; Kaneko, S.; Okuya, M.; Tennakone, K. Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor. Langmuir 2002, 18, 10493–10495. [Google Scholar] [CrossRef]
- Kumara, G.R.A.; Okuya, M.; Murakami, K.; Kaneko, S.; Jayaweera, V.V.; Tennakone, K. Dye-Sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: Enhancement of the efficiency. J. Photochem. Photobiol. Chem. 2004, 164, 183–185. [Google Scholar] [CrossRef]
- Taguchi, T.; Zhang, X.; Sutanto, I.; Tokuhiro, K.; Rao, T.N.; Watanabe, H.; Nakamori, T.; Uragami, M.; Fujishima, A. Improving the performance of solid-state dye-Sensitized solar cell using MgO-coated TiO2 nanoporous film. Chem. Commun. 2003, 2480–2481. [Google Scholar] [CrossRef]
- Sakamoto, H.; Igarashi, S.; Niume, K.; Nagai, M. Highly efficient all solid state dye-Sensitized solar cells by the specific interaction of CuI with NCS groups. Org. Electron. 2011, 12, 1247–1252. [Google Scholar] [CrossRef]
- Sakamoto, H.; Igarashi, S.; Uchida, M.; Niume, K.; Nagai, M. Highly efficient all solid state dye-Sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics. Org. Electron. 2012, 13, 514–518. [Google Scholar] [CrossRef]
- Amalina, M.N.; Rusop, M. The Performance of Solid-State Dye Sensitized Solar Cells with Mist-Atomized CuI as the Hole Conductors. In Recent Trends in Nanotechnology and Materials Science: Selected Review Papers from the 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2013); Gaol, F.L., Webb, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 49–62. ISBN 978-3-319-04516-0. [Google Scholar]
- Muhamad, N.A.; Azhar, N.E.B.M.; Abdullah, M.H.; Zahidi, M.B.M.; Mahmood, M.R. The fabrication of solid state dye-sensitised solar cells with I2 doped CuI as the hole conductors. Int. J. Mater. Eng. Innov. 2015, 6, 32–41. [Google Scholar] [CrossRef]
- Taha, S.; Al-Dabag, S.Y.; Ahmed, S.S.; Taher, W.J. TiO2-CuI Nanoparticle /Ru Solid State Dye-Sensitize Solar Cells. J. Adv. Chem. 2016, 12, 3971–3976. [Google Scholar] [CrossRef]
- Konno, A. (Invited) Development of the Hybrid Solar Cells Using Copper Iodide as a Hole Transport Material. Meet. Abstr. 2016, MA2016-02, 3371. [Google Scholar]
- Hanif, Q.A.; Ramelan, A.H.; Saputri, L.N.M.Z.; Wahyuningsih, S. Modification of CuI based Hole Transport Material for Solid State DSSC Application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 333, 012029. [Google Scholar] [CrossRef]
- Li, M.-H.; Yum, J.-H.; Moon, S.-J.; Chen, P. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells. Energies 2016, 9, 331. [Google Scholar] [CrossRef]
- Hehl, R.; Thiele, G. Synthesis and Crystal Structure of Me3NHCu2(SCN)3, Me2C=NMe2Cu2(SCN)3, and Me2C=NMe2Ag2(SCN)3. Three-dimensional Networks of Thiocyanatometallates(I). Zeitschrift für Anorganische und Allgemeine Chemie 2000, 626, 2167–2172. [Google Scholar] [CrossRef]
- Mahrov, B.; Hagfeldt, A.; Lenzmann, F.; Boschloo, G. Comparison of charge accumulation and transport in nanostructured dye-Sensitized solar cells with electrolyte or CuSCN as hole conductor. Sol. Energy Mater. Sol. Cells 2005, 88, 351–362. [Google Scholar] [CrossRef]
- Perera, V.P.S.; Senevirathna, M.K.I.; Pitigala, P.K.D.D.P.; Tennakone, K. Doping CuSCN films for enhancement of conductivity: Application in dye-Sensitized solid-state solar cells. Sol. Energy Mater. Sol. Cells 2005, 86, 443–450. [Google Scholar] [CrossRef]
- O’Regan, B.C.; Scully, S.; Mayer, A.C.; Palomares, E.; Durrant, J. The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements. J. Phys. Chem. B 2005, 109, 4616–4623. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics. Chem. Mater. 2002, 14, 5023–5029. [Google Scholar] [CrossRef]
- O’Regan, B.C.; Lenzmann, F. Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells. J. Phys. Chem. B 2004, 108, 4342–4350. [Google Scholar] [CrossRef]
- Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2005, 127, 9648–9654. [Google Scholar] [CrossRef]
- Bach, U.; Daeneke, T. A Solid Advancement for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2012, 51, 10451–10452. [Google Scholar] [CrossRef]
- Mallouk, T.E. Applied chemistry: Molecules meet materials. Nature 2012, 485, 450–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, J.J.; Ren, Y.; Yu, C.; Shum, K. Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 2012, 101, 093901. [Google Scholar] [CrossRef]
- Shum, K.; Chen, Z.; Qureshi, J.; Yu, C.; Wang, J.J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J.T. Synthesis and characterization of CsSnI3 thin films. Appl. Phys. Lett. 2010, 96, 221903. [Google Scholar] [CrossRef]
- Yu, C.; Chen, Z.J.; Wang, J.; Pfenninger, W.; Vockic, N.; Kenney, J.T.; Shum, K. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J. Appl. Phys. 2011, 110, 063526. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, C.; Shum, K.; Wang, J.J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J.T. Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy. J. Lumin. 2012, 132, 345–349. [Google Scholar] [CrossRef]
- Yamada, K.; Funabiki, S.; Horimoto, H.; Matsui, T.; Okuda, T.; Ichiba, S. Structural Phase Transitions of the Polymorphs of CsSnI3 by Means of Rietveld Analysis of the X-Ray Diffraction. Chem. Lett. 1991, 20, 801–804. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef]
- Zhou, Y.; Garces, H.F.; Senturk, B.S.; Ortiz, A.L.; Padture, N.P. Room temperature “one-Pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films and particles. Mater. Lett. 2013, 110, 127–129. [Google Scholar] [CrossRef]
- Kaltzoglou, A.; Antoniadou, M.; Kontos, A.G.; Stoumpos, C.C.; Perganti, D.; Siranidi, E.; Raptis, V.; Trohidou, K.; Psycharis, V.; Kanatzidis, M.G.; et al. Optical-Vibrational Properties of the Cs2SnX6 (X = Cl, Br, I) Defect Perovskites and Hole-Transport Efficiency in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120, 11777–11785. [Google Scholar] [CrossRef]
- Lee, B.; Krenselewski, A.; Baik, S.I.; Seidman, D.N.; Chang, R.P.H. Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6−xBrx, for potential solar cell applications. Sustain. Energy Fuels 2017, 1, 710–724. [Google Scholar] [CrossRef]
- Kapil, G.; Ohta, T.; Koyanagi, T.; Vigneshwaran, M.; Zhang, Y.; Ogomi, Y.; Pandey, S.S.; Yoshino, K.; Shen, Q.; Toyoda, T.; et al. Investigation of Interfacial Charge Transfer in Solution Processed Cs2SnI6 Thin Films. J. Phys. Chem. C 2017, 121, 13092–13100. [Google Scholar] [CrossRef]
- Mehmood, U.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Malik, M.I.; Shehzad, F.; Khan, A.U.H. Effect of temperature on the photovoltaic performance and stability of solid-State dye-Sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 79, 946–959. [Google Scholar] [CrossRef]
- Fukuri, N.; Saito, Y.; Kubo, W.; Senadeera, G.K.R.; Kitamura, T.; Wada, Y.; Yanagida, S. Performance Improvement of Solid-State Dye-Sensitized Solar Cells Fabricated Using Poly(3,4-ethylenedioxythiophene) and Amphiphilic Sensitizing Dye. J. Electrochem. Soc. 2004, 151, A1745–A1748. [Google Scholar] [CrossRef]
- Senadeera, R.; Fukuri, N.; Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-Transporting medium. Chem. Commun. 2005, 2259–2261. [Google Scholar] [CrossRef] [PubMed]
- Senadeera, G.K.R.; Kitamura, T.; Wada, Y.; Yanagida, S. Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-Assembled monolayers. J. Photochem. Photobiol. Chem. 2006, 184, 234–239. [Google Scholar] [CrossRef]
- Mozer, A.J.; Wada, Y.; Jiang, K.-J.; Masaki, N.; Yanagida, S.; Mori, S.N. Efficient dye-Sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and a conjugated polymer hole conductor. Appl. Phys. Lett. 2006, 89, 043509. [Google Scholar] [CrossRef]
- Kim, Y.; Sung, Y.-E.; Xia, J.-B.; Lira-Cantu, M.; Masaki, N.; Yanagida, S. Solid-State dye-Sensitized TiO2 solar cells using poly(3,4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodes. J. Photochem. Photobiol. Chem. 2008, 193, 77–80. [Google Scholar] [CrossRef]
- Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S. The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-Sensitized solar cell. J. Mater. Chem. 2007, 17, 2845–2850. [Google Scholar] [CrossRef]
- Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2008, 130, 1258–1263. [Google Scholar] [CrossRef]
- Schön, J.H.; Kloc, C.; Bucher, E.; Batlogg, B. Efficient organic photovoltaic diodes based on doped pentacene. Nature 2000, 403, 408. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J.C. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 2001, 78, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.; Meijer, E.W.; Herwig, P.; et al. Two-Dimensional charge transport in self-Organized, high-mobility conjugated polymers. Nature 1999, 401, 685. [Google Scholar] [CrossRef]
- Katz, H.E.; Laquindanum, J.G.; Lovinger, A.J. Synthesis, Solubility, and Field-Effect Mobility of Elongated and Oxa-Substituted α,ω-Dialkyl Thiophene Oligomers. Extension of “Polar Intermediate” Synthetic Strategy and Solution Deposition on Transistor Substrates. Chem. Mater. 1998, 10, 633–638. [Google Scholar] [CrossRef]
- Van Slyke, S.A.; Chen, C.H.; Tang, C.W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1996, 69, 2160–2162. [Google Scholar] [CrossRef]
- Hung, L.S.; Tang, C.W.; Mason, M.G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 1997, 70, 152–154. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hammed, W.A.; Yahya, R.B.; Mahmud, H.N.M.E. Prospects of conducting polymer and graphene as counter electrodes in dye-Sensitized solar cells. J. Polym. Res. 2016, 23, 192. [Google Scholar] [CrossRef]
- Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. Fabrication of solid-State dye-Sensitized TiO2 solar cells combined with polypyrrole. Sol. Energy Mater. Sol. Cells 1998, 55, 113–125. [Google Scholar] [CrossRef]
- Kitamura, T.; Maitani, M.; Matsuda, M.; Wada, Y.; Yanagida, S. Improved Solid-State Dye Solar Cells with Polypyrrole using a Carbon-Based Counter Electrode. Chem. Lett. 2001, 30, 1054–1055. [Google Scholar] [CrossRef]
- Wu, J.; Li, Q.; Fan, L.; Lan, Z.; Li, P.; Lin, J.; Hao, S. High-Performance polypyrrole nanoparticles counter electrode for dye-Sensitized solar cells. J. Power Sources 2008, 181, 172–176. [Google Scholar] [CrossRef]
- Hwang, D.K.; Song, D.; Jeon, S.S.; Han, T.H.; Kang, Y.S.; Im, S.S. Ultrathin polypyrrole nanosheets doped with HCl as counter electrodes in dye-Sensitized solar cells. J. Mater. Chem. A 2013, 2, 859–865. [Google Scholar] [CrossRef]
- Wang, Z.-L.; He, X.-J.; Ye, S.-H.; Tong, Y.-X.; Li, G.-R. Design of Polypyrrole/Polyaniline Double-Walled Nanotube Arrays for Electrochemical Energy Storage. ACS Appl. Mater. Interfaces 2014, 6, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiao, Y.; Han, G.; Li, M. Honeycomb-Like polypyrrole/Multi-Wall carbon nanotube films as an effective counter electrode in bifacial dye-Sensitized solar cells. J. Mater. Sci. 2017, 52, 8421–8431. [Google Scholar] [CrossRef]
- Kuliček, J.; Gemeiner, P.; Omastová, M.; Mičušík, M. Preparation of polypyrrole/multi-walled carbon nanotube hybrids by electropolymerization combined with a coating method for counter electrodes in dye-Sensitized solar cells. Chem. Pap. 2018, 72, 1651–1667. [Google Scholar] [CrossRef]
- Tan, S.; Zhai, J.; Xue, B.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells. Langmuir 2004, 20, 2934–2937. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Zhai, J.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. B 2004, 108, 18693–18697. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, Y.; Tang, Q.; Zhao, Z.; Hou, M.; Li, R.; He, B.; Yu, L.; Yang, P.; Zhang, Z. A dye-Sensitized solar cell having polyaniline species in each component with 3.1%-Efficiency. J. Power Sources 2015, 284, 178–185. [Google Scholar] [CrossRef]
- Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X. Bifacial quasi-Solid-State dye-Sensitized solar cells with Poly (Vinyl pyrrolidone)/Polyaniline transparent counter electrode. Nano Energy 2016, 26, 123–130. [Google Scholar] [CrossRef]
- Mohan, K.; Bora, A.; Nath, B.C.; Gogoi, P.; Saikia, B.J.; Dolui, S.K. A highly stable and efficient quasi solid state dye sensitized solar cell based on Polymethyl methacrylate (PMMA)/Polyaniline Nanotube(PANI-NT) gel electrolyte. Electrochim. Acta 2016, 222, 1072–1078. [Google Scholar] [CrossRef]
- Elayappan, V.; Murugadoss, V.; Angaiah, S.; Fei, Z.; Dyson, P.J. Development of a conjugated polyaniline incorporated electrospun poly (Vinylidene fluoride-co-hexafluoropropylene) composite membrane electrolyte for high performance dye-Sensitized solar cells. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Ma, P.; Tan, J.; Cheng, H.; Fang, Y.; Wang, Y.; Dai, Y.; Fang, S.; Zhou, X.; Lin, Y. Polyaniline-Grafted silica nanocomposites-Based gel electrolytes for quasi-Solid-State dye-Sensitized solar cells. Appl. Surf. Sci. 2018, 427, 458–464. [Google Scholar] [CrossRef]
- Jin, X.; You, L.; Chen, Z.; Li, Q. High-efficiency platinum-free quasi-solid-state dye-Sensitized solar cells from polyaniline (Polypyrrole)-Carbon nanotube complex tailored conducting gel electrolytes and counter electrodes. Electrochim. Acta 2018, 260, 905–911. [Google Scholar] [CrossRef]
- Zafer, C.; Karapire, C.; Serdar Sariciftci, N.; Icli, S. Characterization of N, N′-bis-2-(1-hydoxy-4-methylpentyl)-3, 4, 9, 10-perylene bis (Dicarboximide) sensitized nanocrystalline TiO2 solar cells with polythiophene hole conductors. Sol. Energy Mater. Sol. Cells 2005, 88, 11–21. [Google Scholar] [CrossRef]
- Lancelle-Beltran, E.; Prené, P.; Boscher, C.; Belleville, P.; Buvat, P.; Lambert, S.; Guillet, F.; Marcel, C.; Sanchez, C. Solid-State Organic/Inorganic Hybrid Solar Cells Based on Poly(octylthiophene) and Dye-Sensitized Nanobrookite and Nanoanatase TiO2 Electrodes. Eur. J. Inorg. Chem. 2008, 2008, 903–910. [Google Scholar] [CrossRef]
- Coakley, K.M.; Liu, Y.; McGehee, M.D.; Frindell, K.L.; Stucky, G.D. Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications. Adv. Funct. Mater. 2003, 13, 301–306. [Google Scholar] [CrossRef]
- Coakley, K.M.; McGehee, M.D. Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett. 2003, 83, 3380–3382. [Google Scholar] [CrossRef]
- Lancelle-Beltran, E.; Prené, P.; Boscher, C.; Belleville, P.; Buvat, P.; Sanchez, C. All-Solid-State Dye-Sensitized Nanoporous TiO2 Hybrid Solar Cells with High Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 2579–2582. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, C.-Y.; Liu, B.; Ramakrishna, S. Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye. Adv. Mater. 2009, 21, 994–1000. [Google Scholar] [CrossRef]
- Jiang, K.-J.; Manseki, K.; Yu, Y.-H.; Masaki, N.; Suzuki, K.; Song, Y.; Yanagida, S. Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT. Adv. Funct. Mater. 2009, 19, 2481–2485. [Google Scholar] [CrossRef]
- Mor, G.K.; Kim, S.; Paulose, M.; Varghese, O.K.; Shankar, K.; Basham, J.; Grimes, C.A. Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array−P3HT Based Heterojunction Solar Cells. Nano Lett. 2009, 9, 4250–4257. [Google Scholar] [CrossRef]
- Song, L.; Wang, W.; Körstgens, V.; González, D.M.; Yao, Y.; Minar, N.K.; Feckl, J.M.; Peters, K.; Bein, T.; Fattakhova-Rohlfing, D.; et al. Spray Deposition of Titania Films with Incorporated Crystalline Nanoparticles for All-Solid-State Dye-Sensitized Solar Cells Using P3HT. Adv. Funct. Mater. 2016, 26, 1498–1506. [Google Scholar] [CrossRef]
- Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synth. Met. 2002, 131, 185–187. [Google Scholar] [CrossRef]
- Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12, 481–494. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Grüner, G. Infrared transparent carbon nanotube thin films. Appl. Phys. Lett. 2009, 94, 081103. [Google Scholar] [CrossRef]
- Saito, Y.; Fukuri, N.; Senadeera, R.; Kitamura, T.; Wada, Y.; Yanagida, S. Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem. Commun. 2004, 6, 71–74. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S. An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material. Adv. Mater. 2010, 22, E150–E155. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Koh, J.K.; Kim, B.; Ahn, S.H.; Ahn, H.; Ryu, D.Y.; Kim, J.H.; Kim, E. Enhanced Performance of I2-Free Solid-State Dye-Sensitized Solar Cells with Conductive Polymer up to 6.8%. Adv. Funct. Mater. 2011, 21, 4633–4639. [Google Scholar] [CrossRef]
- Cai, L.; Liu, X.; Wang, L.; Liu, B. Iodine-free organic dye sensitized solar cells with in situ polymerized hole transporting material from alkoxy-Substituted TriEDOT. Polym. Bull. 2012, 68, 1857–1865. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Wang, L.; Cai, L.; Liu, B. Light controlled assembling of iodine-Free dye-Sensitized solar cells with poly(3,4-ethylenedioxythiophene) as a hole conductor reaching 7.1% efficiency. Phys. Chem. Chem. Phys. 2012, 14, 7098–7103. [Google Scholar] [CrossRef]
- Zhang, J.; Vlachopoulos, N.; Jouini, M.; Johansson, M.B.; Zhang, X.; Nazeeruddin, M.K.; Boschloo, G.; Johansson, E.M.J.; Hagfeldt, A. Efficient solid-State dye sensitized solar cells: The influence of dye molecular structures for the in-Situ photoelectrochemically polymerized PEDOT as hole transporting material. Nano Energy 2016, 19, 455–470. [Google Scholar] [CrossRef]
- Chang, J.A.; Rhee, J.H.; Im, S.H.; Lee, Y.H.; Kim, H.; Seok, S.I.; Nazeeruddin, M.K.; Gratzel, M. High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells. Nano Lett. 2010, 10, 2609–2612. [Google Scholar] [CrossRef]
- Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U. High efficiency solid-State photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 2001, 79, 2085–2087. [Google Scholar] [CrossRef]
- Snaith, H.J.; Moule, A.J.; Klein, C.; Meerholz, K.; Friend, R.H.; Grätzel, M. Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Lett. 2007, 7, 3372–3376. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.; Plass, R.; Grätzel, M.; Matthieu, H.-J. Improvement of the photovoltaic performance of solid-State dye-Sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 2002, 81, 367–369. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; Zakeeruddin, S.M.; Grätzel, M. Efficiency improvement in solid-State-Dye-Sensitized photovoltaics with an amphiphilic Ruthenium-Dye. Appl. Phys. Lett. 2004, 86, 013504. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.; Grätzel, M. Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells. Adv. Mater. 2005, 17, 813–815. [Google Scholar] [CrossRef]
- Wang, M.; Moon, S.-J.; Xu, M.; Chittibabu, K.; Wang, P.; Cevey-Ha, N.-L.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M. Efficient and Stable Solid-State Dye-Sensitized Solar Cells Based on a High-Molar-Extinction-Coefficient Sensitizer. Small 2010, 6, 319–324. [Google Scholar] [CrossRef]
- Cai, N.; Moon, S.-J.; Cevey-Ha, L.; Moehl, T.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells. Nano Lett. 2011, 11, 1452–1456. [Google Scholar] [CrossRef]
- Snaith, H.J.; Grätzel, M. Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-Sensitized solar cells. Appl. Phys. Lett. 2006, 89, 262114. [Google Scholar] [CrossRef]
- Snaith, H.J.; Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells. Adv. Mater. 2007, 19, 3187–3200. [Google Scholar] [CrossRef]
- Yi, C.; Giordano, F.; Cevey-Ha, N.-L.; Tsao, H.N.; Zakeeruddin, S.M.; Grätzel, M. Influence of Structural Variations in Push–Pull Zinc Porphyrins on Photovoltaic Performance of Dye-Sensitized Solar Cells. ChemSusChem 2014, 7, 1107–1113. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Giordano, F.; Schreier, M.; Pellet, N.; Hu, Y.; Yi, C.; Robertson, N.; Hua, J.; Zakeeruddin, S.M.; et al. Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2016, 138, 10742–10745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, X.; Hua, J.; Tian, H. Molecular engineering of organic sensitizers with o,p-dialkoxyphenyl-based bulky donors for highly efficient dye-Sensitized solar cells. Mol. Syst. Des. Eng. 2017, 2, 98–122. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, X.; Giordano, F.; Hu, Y.; Hua, J.; Zakeeruddin, S.M.; Tian, H.; Grätzel, M. Significance of π-bridge contribution in pyrido[3,4-b]pyrazine featured D–A–π–A organic dyes for dye-Sensitized solar cells. Mater. Chem. Front. 2016, 1, 181–189. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, B.; Liu, P.; Hu, Y.; Yu, Y.; Ding, H.; Kloo, L.; Hua, J.; Sun, L.; Tian, H. High performance solid-state dye-Sensitized solar cells based on organic blue-Colored dyes. J. Mater. Chem. A 2017, 5, 1242–1247. [Google Scholar] [CrossRef]
- Miettunen, K.; Halme, J.; Lund, P. Spatial distribution and decrease of dye solar cell performance induced by electrolyte filling. Electrochem. Commun. 2009, 11, 25–27. [Google Scholar] [CrossRef] [Green Version]
- Tsekouras, G.; Mozer, A.J.; Wallace, G.G. Enhanced Performance of Dye Sensitized Solar Cells Utilizing Platinum Electrodeposit Counter Electrodes. J. Electrochem. Soc. 2008, 155, K124–K128. [Google Scholar] [CrossRef]
- Ito, S.; Murakami, T.N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M.K.; Grätzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008, 516, 4613–4619. [Google Scholar] [CrossRef]
- Wang, M.; Xu, M.; Shi, D.; Li, R.; Gao, F.; Zhang, G.; Yi, Z.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; et al. High-Performance Liquid and Solid Dye-Sensitized Solar Cells Based on a Novel Metal-Free Organic Sensitizer. Adv. Mater. 2008, 20, 4460–4463. [Google Scholar] [CrossRef]
- Mastroianni, S.; Asghar, I.; Miettunen, K.; Halme, J.; Lanuti, A.; Brown, T.M.; Lund, P. Effect of electrolyte bleaching on the stability and performance of dye solar cells. Phys. Chem. Chem. Phys. 2014, 16, 6092–6100. [Google Scholar] [CrossRef]
- Miettunen, K.; Halme, J.; Vahermaa, P.; Saukkonen, T.; Toivola, M.; Lund, P. Dye Solar Cells on ITO-PET Substrate with TiO2 Recombination Blocking Layers. J. Electrochem. Soc. 2009, 156, B876–B883. [Google Scholar] [CrossRef]
- Hirata, M.K.; Freitas, J.N.; Santos, T.E.A.; Mammana, V.P.; Nogueira, A.F. Assembly Considerations for Dye-Sensitized Solar Modules with Polymer Gel Electrolyte. Ind. Eng. Chem. Res. 2016, 55, 10278–10285. [Google Scholar] [CrossRef]
- Späth, M.; Sommeling, P.M.; van Roosmalen, J.A.M.; Smit, H.J.P.; van der Burg, N.P.G.; Mahieu, D.R.; Bakker, N.J.; Kroon, J.M. Reproducible manufacturing of dye-Sensitized solar cells on a semi-Automated baseline. Prog. Photovolt. Res. Appl. 2003, 11, 207–220. [Google Scholar] [CrossRef]
- Sastrawan, R.; Beier, J.; Belledin, U.; Hemming, S.; Hinsch, A.; Kern, R.; Vetter, C.; Petrat, F.M.; Prodi-Schwab, A.; Lechner, P.; et al. New interdigital design for large area dye solar modules using a lead-Free glass frit sealing. Prog. Photovolt. Res. Appl. 2006, 14, 697–709. [Google Scholar] [CrossRef]
- Sastrawan, R.; Beier, J.; Belledin, U.; Hemming, S.; Hinsch, A.; Kern, R.; Vetter, C.; Petrat, F.M.; Prodi-Schwab, A.; Lechner, P.; et al. A glass frit-sealed dye solar cell module with integrated series connections. Sol. Energy Mater. Sol. Cells 2006, 90, 1680–1691. [Google Scholar] [CrossRef]
- Miettunen, K.; Asghar, I.; Mastroianni, S.; Halme, J.; Barnes, P.R.F.; Rikkinen, E.; O’Regan, B.C.; Lund, P. Effect of molecular filtering and electrolyte composition on the spatial variation in performance of dye solar cells. J. Electroanal. Chem. 2012, 664, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, H.; Gruszecki, T.; Johansson, L.-H.; Johander, P. Manufacturing method for monolithic dye-sensitised solar cells permitting long-Term stable low-Power modules. Sol. Energy Mater. Sol. Cells 2003, 77, 405–413. [Google Scholar] [CrossRef]
- Mariani, P.; Vesce, L.; Carlo, A.D. The role of printing techniques for large-area dye sensitized solar cells. Semicond. Sci. Technol. 2015, 30, 104003. [Google Scholar] [CrossRef]
DSSC Configuration | Electrolyte | Dye | Charge Transfer Resistance (Ω-cm2) | PCE (%) | ref. |
---|---|---|---|---|---|
Front illumination | |||||
Glass (conventional) | [Co(phen)3]2+/3+ | ADEKA + LEG4 | Not reported | 14.3 | [15] |
Polymer bifacial | I−/I3− | N3 | 0.66 | 6.97 | [104] |
Metal CE–Glass PE | [Co(bpy)3]2+/3+ | Z907 | 8.0 | 5.0 | [105] |
Metal CE–Polymer PE | I−/I3− | N719 | 2 | 5.29 | [106] |
Rear illumination | |||||
Metal PE–Glass CE | I−/I3− | N719 | Not reported | 9.2 | [107] |
Metal PE–Polymer CE | I−/I3− | N719 | Not reported | 8.6 | [68] |
Special | |||||
Monolithic | I−/I3− | N719 | Not reported | 9.5 | [108] |
Solid state | [Cu(tmby)2]2+/1+ | XY-1 | Not reported | 13.1 | [18] |
Main Solvent of Liquid Electrolyte | Redox Species | Dye | Long Term Stability | PCE (%) | Ref. |
---|---|---|---|---|---|
Acetonitrile | [Co(phen)3]3+/2+ | ADEKA-1 + LEG4 | Not reported | 14.3 | [15] |
Acetonitrile | [Co(bpy)3]3+/2+ | SM315 | 500 h at 298 k AM 1.5G | 13.0 | [17] |
Acetonitrile | [Co(bpy)3]3+/2+ | YD2-o-C8 | Not reported | 12.3 | [16] |
Acetonitrile | [Cu(tmby)2]2+/1+ | D35 + XY1 | Not reported | 11.3 | [19] |
Acetonitrile | I−/I3− (DmPII) GuNCS/TBP | N3 | Not reported | 11.18 | [41] |
Acetonitrile | I−/I3− (DmPII) GuNCS/TBP | C104 | Not reported | 10.53 | [128] |
Methoxy acetonitrile | I−/I3− (DmPII) MAN/TBP | N749 | Not reported | 10.4 | [129] |
Acetonitrile + Valerontrile | I−/I3− (DmPII) GuNCS/TBP | IJ-1 | Not reported | 10.3 | [130] |
Acetonitrile + Valerontrile | I−/I3− (PMII) TBP | Z-910 | Unstable | 10.2 | [109] |
Acetonitrile +N-methyl oxazolidinone | I−/I3− | N719 | Unstable | 10.0 | [127] |
Electrolyte | Dye | Long Term Stability | PCE (%) | Ref. |
---|---|---|---|---|
DMII, I2, NBB GuNCS, NaI in BN | C106 | 1000 h at 60 °C | 10.0 | [149] |
DMII, I2, NBB, GuNCS in MPN | C103 | 1000 h at 60 °C | 9.60 | [159] |
PMII, [MeIm-TEMPO][TFSI], NOBF4, LiTFSI, NBB in MPN | D205 | 800 h at 25 °C | 8.20 | [160] |
PMImI, I2, GuSCN, NMBI in MPN | K19 | 1000 h at 80 °C | 8.00 | [161] |
I2, NMBI in PMImI/EMImTCM | Z907Na | 672 h at 60°C | 7.40 | [156] |
[Co((MeIm-Bpy)PF6)3]2+/3+, NOBF4, GuNCS, TBP in MII/EMINCS | N719 | 800 h at 30 °C | 7.37 | [162] |
PMII, 4-OH-TEMPO, NOBF4, LiTFSI, NBB, in MPN | D205 | 800 h at 25 °C | 7.20 | [160] |
I2, NMBI, GuSCN in PMImI/EMImSCN | K19 | - | 7.05 | [134] |
I2, 0.5 M NMBI, 0.1 M GuSCN in PMImI/EMImB(CN)4 | Z907Na | 1000 h at 60 °C | 7.0 | [163] |
I2, GuSCN, TBP in PMImI/EMImSCN | Z907 | 1000 h at 55–60 °C | 7.0 | [158] |
Redox Species | Dye | Long Term Stability | PCE (%) | ref. |
---|---|---|---|---|
[Co(phen)3]3+/2+ | ADEKA-1 + LEG4 | Not reported | 14.3 | [15] |
[Co(bpy)3]3+/2+ | SM315 | 500 h at 298 k AM 1.5G | 13.0 | [17] |
[Co(bpy)3]3+/2+ | YD2-o-C8 | Not reported | 12.3 | [16] |
[Cu(tmby)2]1+/2+ | XY1 | Not reported | 13.1 | [18] |
[Cu(tmby)2]1+/2+ | D35 + XY1 | Not reported | 11.3 | [19] |
[Cu(tmby)2]1+/2+ | Y123 | Not reported | 11.0 | [100] |
Ferrocenium/ferrocene | Carbz-PAHTDTT | Not reported | 7.5 | [191] |
Ferrocenium/ferrocene | Carbz-PAHTDTT | Not reported | 5.4 | [192] |
Ferrocenium/ferrocene | Carbz-PAHTDTT | Unstable | 4.9 | [192] |
Ni (III)/(IV) bis(dicarbollides) | N719 | Unstable | 2.0 | [195] |
Ni (III)/(IV) bis(dicarbollides) | N719 | Not reported | 1.7 | [194] |
Ni (III)/(IV) bis(dicarbollides) | N719 | Not reported | 1.5 | [193] |
Polymer Host | Repeat Unit | Glass Transition Temperature, Tg (°C) | Melting Point, Tm (°C) |
---|---|---|---|
Poly(ethylene oxide) (PEO) | −64 | 65 | |
Poly(propylene oxide) (PPO) | −60 | - | |
Poly(acrylonitrile) (PAN) | 125 | 317 | |
Poly(vinyl pyrrolidone) (PVP) | 110 | 180 | |
Poly(methyl methacrylate) (PMMA) | 105 | - | |
Poly(vinylidene fluoride) (PVDF) | −40 | 171 | |
Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) | −90 | 135 |
Organic Solvent | Melting Point, (°C) | Boiling Point, (°C) | Dielectric Constant, ε | Viscosity, (cP) |
---|---|---|---|---|
Water | 0 | 100 | 78.0 | 0.89 |
Dimethyl carbonate (DMC) | 4.6 | 91 | 3.1 | 0.59 |
Diethyl carbonate (DEC) | −74.3 | 126 | 2.8 | 0.75 |
γ-butyrolactone (GBL) | −44.0 | 204 | 39.0 | 1.73 |
Propylene carbonate (PC) | −49.0 | 242 | 65.0 | 2.5 |
Ethylene carbonate (EC) | 36.4 | 248 | 90.0 | 1.90 |
Acetonitrile (ACN) | −44.0 | 82 | 36.6 | 0.34 |
Propionitrile (PPN) | −92.0 | 97 | 28.0 | 0.41 |
3-methoxy propionitrile (MPN) | −57.0 | 165 | 36 | 1.1 |
Electrolyte Composition | Redox Species | Dye | Long Term Stability | PCE (%) | ref. |
---|---|---|---|---|---|
Thermoplastic (TPPE) | |||||
PVDF-HFP | I−/I3− | PREDCN2 | 1000 h at room temperature under 1 sun | 10.37 | [240] |
PVDF-HFP/MPN | TEMPO | MD-153 | N/A | 10.10 | [245] |
PVDF-HFP/ACN | [Co(bpy)3]2+/3+ | MK2 | 700 h under 1 sun | 8.70 | [244] |
PEO/PVDF/MPN | I−/I3− | N719 | 500 h at 60 °C in the dark | 8.32 | [205] |
PEG/PC | I−/I3− | N719 | 60 days under ambient conditions | 7.22 | [212] |
PEO/urea | I−/I3− | N719 | N/A | 6.82 | [235] |
PEO | I−/I3− | N3 | 7 days under ambient conditions (unsealed cells) | 6.12 | [234] |
Thermosetting (TSPE) | |||||
MMA-HDDA | I−/I3− | N719 | 600 h at 60 °C in the dark | 10.60 | [259] |
POE-PAI | I−/I3− | N719 | N/A | 9.48 | [257] |
PVA-co-MMA/ACN | I−/I3− | N719 | 1000 h at 30 °C under 1 sun | 9.10 | [209] |
PVA-co-MMA/MPN | I−/I3− | N719 | 1000 h at 30 °C under 1 sun | 8.61 | [209] |
PVDF-HFP | I−/I3− | N719 | N/A | 8.35 | [258] |
PAMAM-PEO with iodide groups | I−/I3− | N719 | N/A | 7.72 | [247] |
BEMA-PEGMA | [Co(bpy)3]2+/3+ | LEG4 | 1500 h at 60 °C under dark followed by more 300 h at 40 °C under 1 sun | 6.40 | [252] |
Composite polymer electrolytes | |||||
PVDF-HFP/PEO/SiO2/EC/PC | I−/I3− | N719 | N/A | 9.44 | [266] |
PVA-co-MMA/TiO2/ACN | I−/I3− | N719 | 1000 h at 30 °C under 1 sun | 9.40 | [209] |
PEO/TiO2 | I−/I3− | N719 | 300 h at 60 °C under 1 sun | 9.20 | [206] |
PAA/PEG/Graphene | I−/I3− | N719 | N/A | 9.10 | [274] |
PVA-co-MMA/TiO2/MPN | I−/I3− | N719 | 1000 h at 30 °C under 1 sun | 8.98 | [209] |
PEO/PVDF/TiO2 | I−/I3− | N719 | 500 h at 60 °C in the dark | 8.91 | [205] |
PAN/CNT | I−/I3− | N719 | N/A | 8.87 | [285] |
PEO/PVDF/GOS | I−/I3− | N719 | 500 h at 60 °C under dark | 8.78 | [208] |
PAN/EC/PC/Ac. carbon | I−/I3− | N719 | N/A | 8.42 | [271] |
PAA/PEG/PEDOT-graphene/PtCo | I−/I3− | N719 | 15 days | 8.20 | [286] |
PAN/EC/PC/SiO2 | I−/I3− | N719 | N/A | 7.51 | [271] |
GO/ACN | I−/I3− | N719 | N/A | 7.50 | [273] |
POEM/MWCNT/ PVDF-HFP | I−/I3− | N719 | N/A | 6.86 | [272] |
SiO2 | [Co(bpy)3]2+/3+ | D35 | N/A | 2.60 | [267] |
Quasi-solid ionic liquid electrolytes | |||||
Phtaloychitosan/PEO/ TPAI/BMII | I−/I3− | N3 | N/A | 9.61 | [282] |
Hydrotalcite nanoclay/PMII | I−/I3− | N719 | N/A | 9.60 | [283] |
PVDF-HFP/BIm | I−/I3− | N719 | 1500 h | 9.26 | [287] |
POEI-IS | SeCN−/(SeCN)3− | TA | 1000 h | 8.18 | [288] |
ExMMT/PMII | I−/I3− | N3 | N/A | 7.77 | [284] |
Al2O3/MPII | I−/I3− | N719 | N/A | 7.60 | [280] |
HPC/MPII | I−/I3− | N719 | Outdoor conditions 600 h | 7.44 | [289] |
PEO/PEGDME/ PMImI/TiO2 | I−/I3− | N719 | N/A | 7.20 | [281] |
SiO2/MPII | I−/I3− | Z907 | N/A | 7.00 | [278] |
PVDF-HFP/MPII | I−/I3− | Z907 | N/A | 5.30 | [279] |
HTM | Dye | Long Term Stability | PCE (%) | Ref. |
---|---|---|---|---|
Solid state ionic conductors | ||||
Succinonitrile + DMPII | N719 | Not reported | 7.80 | [304] |
MPII + NMBI + LiI + I2 | MK2 | Not reported | 7.45 | [290] |
Succinonitrie + N-methyl-N-butylpyrrolidinium iodide + I2 | N719 | Not reported | 6.7 | [291] |
PMII/I2/LiI/EMIm+BF4− | Metal free organic dye (name undisclosed) | 100% original after 1000 h of soaking at 100 mW cm−2 | 6.63 | [302] |
Inorganic HTMS | ||||
[Cu(tmby)2](TFSI)2 and [Cu(tmby)2](TFSI) | Y123 | Stability reported for under 200 h at 500 W m−2 | 11.0 | [100] |
Fluorine doped CsSnI3 + SnF2 | N719 | Not reported | 8.5 | [31] |
Cu(dmp)2 HTM | LEG4 | Not reported | 8.2 | [186] |
Cs2SnI6 + Li-TFSI + TBP | a mixture of N719 with YD2-o-C8 and RLC5 | Not reported | 8.0 | [292] |
Organic HTMs | ||||
Spiro-OMeTAD + AQ310 | AQ310 | Not reported | 8.0 | [317] |
Spiro-OMeTAD + S5 dye | S5 | Not reported | 7.8 | [427] |
Spiro-OMeTAD + TeCA | LEG4 | Not reported | 7.7 | [294] |
Spiro-OMeTAD + FK102 (Co3+) | Y123 | Not reported | 7.2 | [293] |
PEDOT (PEP) | LEG4 | Not reported | 7.11 | [412] |
PEDOT with OM-TiO2 | N719 | Not reported | 6.8 | [409] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftikhar, H.; Sonai, G.G.; Hashmi, S.G.; Nogueira, A.F.; Lund, P.D. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12, 1998. https://doi.org/10.3390/ma12121998
Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials. 2019; 12(12):1998. https://doi.org/10.3390/ma12121998
Chicago/Turabian StyleIftikhar, Haider, Gabriela Gava Sonai, Syed Ghufran Hashmi, Ana Flávia Nogueira, and Peter David Lund. 2019. "Progress on Electrolytes Development in Dye-Sensitized Solar Cells" Materials 12, no. 12: 1998. https://doi.org/10.3390/ma12121998
APA StyleIftikhar, H., Sonai, G. G., Hashmi, S. G., Nogueira, A. F., & Lund, P. D. (2019). Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials, 12(12), 1998. https://doi.org/10.3390/ma12121998