Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Superinjection of Holes in 4H-SiC Diodes
2.2. Impact of Doping of the n-type Injection Layer
2.3. Impact of the Activation Energy of Acceptors
2.4. Impact of Temperature
2.5. 6H-SiC and 3C-SiC p-i-n Diodes
2.6. ZnS and AlN Diodes
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schubert, E.F. Light-Emitting Diodes; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Casey, H.C., Jr.; Panish, M.B. Heterostructure Lasers; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Agrawal, G.P.; Dutta, N.K. Semiconductor Lasers; Springer: New York, NY, USA, 2013. [Google Scholar]
- Witzens, J. High-Speed Silicon Photonics Modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Peng, Z.; Fattal, D.; Fiorentino, M.; Beausoleil, R. CMOS-Compatible Microring Modulators for Nanophotonic Interconnect. In Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching; Optical Society of America: Washington, DC, USA, 2010. [Google Scholar]
- Lohrmann, A.; Iwamoto, N.; Bodrog, Z.; Castelletto, S.; Ohshima, T.; Karle, T.J.; Gali, A.; Prawer, S.; McCallum, J.C.; Johnson, B.C. Single-photon emitting diode in silicon carbide. Nat. Commun. 2015, 6, 7783. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Kardynal, B.E.; Stevenson, R.M.; Shields, A.J.; Lobo, C.J.; Cooper, K.; Beattie, N.S.; Ritchie, D.A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102–105. [Google Scholar] [CrossRef]
- Fedyanin, D.Y.; Agio, M. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New J. Phys. 2016, 18, 073012. [Google Scholar] [CrossRef]
- Piprek, J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Kasap, S.; Capper, P. Springer Handbook of Electronic and Photonic Materials; Springer: New York, NY, USA, 2017. [Google Scholar]
- Zhang, S.B.; Wei, S.-H.; Zunger, A. A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds. J. Appl. Phys. 1998, 83, 3192–3196. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, S.-H. Doping asymmetry in wide-bandgap semiconductors: Origins and solutions. Phys. Status Solidi (b) 2008, 245, 641–652. [Google Scholar] [CrossRef]
- Traoré, A.; Koizumi, S.; Pernot, J. Effect of n- and p-type doping concentrations and compensation on the electrical properties of semiconducting diamond. Phys. Status Solidi (a) 2016, 213, 2036–2043. [Google Scholar] [CrossRef]
- Khramtsov, I.A.; Fedyanin, D.Y. Superinjection in diamond p-i-n diodes: Bright single-photon electroluminescence of color centers beyond the doping limit. arXiv 2018, arXiv:1804.01066. [Google Scholar]
- Neumark, G.F. Wide bandgap light-emitting devices materials and doping problems. Mater. Lett. 1997, 30, 131–135. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, D.Y.; Fred Schubert, E.; Cho, J.; Kim, J.K. Fundamental Limitations of Wide-Bandgap Semiconductors for Light-Emitting Diodes. ACS Energy Lett. 2018, 3, 655–662. [Google Scholar] [CrossRef]
- Alferov, Z.I.; Khalfin, V.B.; Kazarinov, R.F. A characteristic feature of injection into heterojunctions. Sov. Phys. Solid State 1967, 8, 2480. [Google Scholar]
- Kazarinov, R.F.; Suris, R.A. Superinjection of carriers in variable-gap pn structures. Sov. Phys. Semicond. 1975, 9, 6–10. [Google Scholar]
- Piprek, J. Nitride Semiconductor Devices: Principles and Simulation; Wiley: Weinheim, Germany, 2007. [Google Scholar]
- Morkoç, H. Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Alferov, Z.I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 2001, 73, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Khramtsov, I.A.; Fedyanin, D.Y. Superinjection in single-photon emitting diamond diodes. In Proceedings of the 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Hong Kong, China, 5–9 November 2018; pp. 123–124. [Google Scholar] [CrossRef]
- Khramtsov, I.A.; Fedyanin, D.Y. Superinjection in diamond homojunction P-I-N diodes. Semicond. Sci. Technol. 2019, 34, 03LT03. [Google Scholar] [CrossRef] [Green Version]
- Khramtsov, I.A.; Vyshnevyy, A.A.; Fedyanin, D.Y. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide. npj Quantum Inf. 2018, 4, 15. [Google Scholar] [CrossRef]
- Widmann, M.; Niethammer, M.; Makino, T.; Rendler, T.; Lasse, S.; Ohshima, T.; Hassan, J.U.; Son, N.T.; Lee, S.-Y.; Wrachtrup, J. Bright single photon sources in lateral silicon carbide light emitting diodes. Appl. Phys. Lett. 2018, 112, 231103. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef]
- Xu, X.; Li, S.; Chen, J.; Cai, S.; Long, Z.; Fang, X. Design Principles and Material Engineering of ZnS for Optoelectronic Devices and Catalysis. Adv. Funct. Mater. 2018, 28, 1802029. [Google Scholar] [CrossRef]
- Lienhard, B.; Lu, T.-J.; Jeong, K.-Y.; Moon, H.; Iranmanesh, A.; Grosso, G.; Englund, D. High-purity single photon emitter in aluminum nitride photonic integrated circuit. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017. [Google Scholar]
- Evwaraye, A.O.; Smith, S.R.; Mitchel, W.C. Shallow and deep levels in n-type 4H-SiC. J. Appl. Phys. 1996, 79, 7726–7730. [Google Scholar] [CrossRef]
- Shur, M.; Rumyantsev, S.; Levinshtein, M. Sic Materials and Devices; World Scientific: Singapore, 2006. [Google Scholar]
- Pernot, J.; Zawadzki, W.; Contreras, S.; Robert, J.L.; Neyret, E.; Di Cioccio, L. Electrical transport in n-type 4H silicon carbide. J. Appl. Phys. 2001, 90, 1869–1878. [Google Scholar] [CrossRef]
- Fedyanin, D.Y.; Arsenin, A.V. Surface plasmon polariton amplification in metal-semiconductor structures. Opt. Express 2011, 19, 12524–12531. [Google Scholar] [CrossRef] [PubMed]
- Vyshnevyy, A.A.; Fedyanin, D.Y. Self-Heating and Cooling of Active Plasmonic Waveguides. ACS Photonics 2016, 3, 51–57. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: Weinheim, Germany, 1981. [Google Scholar]
- Harris, G.L. Properties of Silicon Carbide; IET: London, UK, 1995. [Google Scholar]
- Roschke, M.; Schwierz, F. Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans. Electron Devices 2001, 48, 1442–1447. [Google Scholar] [CrossRef]
- Lophitis, N.; Arvanitopoulos, A.; Perkins, S.; Antoniou, M. TCAD Device Modelling and Simulation of Wide Bandgap Power Semiconductors. In Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications; Sharma, Y.K., Ed.; InTechOpen: London, UK, 2018. [Google Scholar] [Green Version]
- Grivickas, V.; Manolis, G.; Gulbinas, K.; Jarašiūnas, K.; Kato, M. Excess carrier recombination lifetime of bulk n-type 3C-SiC. Appl. Phys. Lett. 2009, 95, 242110. [Google Scholar] [CrossRef]
- Arvanitopoulos, A.; Lophitis, N.; Gyftakis, K.N.; Perkins, S.; Antoniou, M. Validated physical models and parameters of bulk 3C–SiC aiming for credible technology computer aided design (TCAD) simulation. Semicond. Sci. Technol. 2017, 32, 104009. [Google Scholar] [CrossRef]
- Brochen, S.; Brault, J.; Chenot, S.; Dussaigne, A.; Leroux, M.; Damilano, B. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 032102. [Google Scholar] [CrossRef]
- Cheng, K.; Liang, H.; Van Hove, M.; Geens, K.; De Jaeger, B.; Srivastava, P.; Kang, X.; Favia, P.; Bender, H.; Decoutere, S.; et al. AlGaN/GaN/AlGaN Double Heterostructures Grown on 200 mm Silicon (111) Substrates with High Electron Mobility. Appl. Phys. Express 2012, 5, 011002. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100cm2V−1s−1). Appl. Phys. Lett. 2004, 85, 4672–4674. [Google Scholar] [CrossRef]
- McCloy, J.S.; Potter, B.G. Photoluminescence in Chemical Vapor Deposited ZnS: Insight into electronic defects. Opt. Mater. Express 2013, 3, 1273–1278. [Google Scholar] [CrossRef]
- Bube, R.H. Photoconductivity of Solids; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Ohno, T.; Kurisu, K.; Taguchi, T. Growth of high-quality cubic ZnS crystals and their application to MIS blue light-emitting diodes. J. Cryst. Growth 1990, 99, 737–742. [Google Scholar] [CrossRef]
- Berhane, A.M.; Jeong, K.-Y.; Bodrog, Z.; Fiedler, S.; Schröder, T.; Triviño, N.V.; Palacios, T.; Gali, A.; Toth, M.; Englund, D.; et al. Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride. Adv. Mater. 2017, 29, 1605092. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Berhane, A.M.; Gentle, A.; Ton-That, C.; Phillips, M.R.; Aharonovich, I. Electroluminescence from localized defects in zinc oxide: Toward electrically driven single photon sources at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 5619–5623. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, Y.; Wang, Z.; Rasmita, A.; Yang, J.; Li, X.; von Bardeleben, H.J.; Gao, W. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 2018, 9, 4106. [Google Scholar] [CrossRef] [PubMed]
- Boretti, A.; Rosa, L.; Mackie, A.; Castelletto, S. Electrically Driven Quantum Light Sources. Adv. Opt. Mater. 2015, 3, 1012–1033. [Google Scholar] [CrossRef]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khramtsov, I.A.; Fedyanin, D.Y. Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors. Materials 2019, 12, 1972. https://doi.org/10.3390/ma12121972
Khramtsov IA, Fedyanin DY. Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors. Materials. 2019; 12(12):1972. https://doi.org/10.3390/ma12121972
Chicago/Turabian StyleKhramtsov, Igor A., and Dmitry Yu. Fedyanin. 2019. "Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors" Materials 12, no. 12: 1972. https://doi.org/10.3390/ma12121972
APA StyleKhramtsov, I. A., & Fedyanin, D. Y. (2019). Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors. Materials, 12(12), 1972. https://doi.org/10.3390/ma12121972