Viscous and Failure Mechanisms in Polymer Networks: A Theoretical Micromechanical Approach
Abstract
:1. Introduction
2. Statistical Description of the Mechanics of Polymers
2.1. Chain-Based Models for Polymeric Materials
2.2. The Chain Configuration Space and the Chain Configuration Density Function (CCDF)
3. Modelling of the Visco-Elastic and the Damage Mechanisms of Polymers
3.1. Microscale Approach: Evolution of the Chain Configuration Density Function
3.2. Stress State in the Polymer
3.3. Polymers with Multiple Networks
4. Thermodynamics of Polymers Undergoing Chains Failure and Bond Exchange
5. Application of the Micromechanical Model
5.1. Parametric Analyses
5.1.1. Rate-Dependent Response
5.1.2. Mechanical Response of a Single Network Polymer in Presence of Damage
5.1.3. Mechanical Response of a Polydisperse Polymer in Presence of Damage
5.2. Simulations of Experimental Tests
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Parameter of the damage rate function | |
Length of a chain Kuhn’s segment | |
Actual and maximum number of active chain per unit volume, respectively | |
Damage parameter of the material | |
Dissipated energy per unit volume of material | |
Dissipated energy per unit volume of material related to the viscous and to the chain’s failure mechanisms, respectively | |
Deformation gradient tensor | |
Time | |
Polymer volume change ratio | |
Activation and deactivation cross-link rates of the polymer chains, respectively | |
Boltzmann’s constant | |
, | Spatial velocity gradient |
Langevin function and its inverse, respectively | |
Number of segments in a polymer chain belonging to a single network | |
Probability distribution function of the number of Kuhn’s segments in a polydisperse polymer | |
End-to-end vector of a polymer chain | |
Force in a single stretched chain | |
Absolute temperature | |
Strain energy of a single Kuhn segment | |
Bond energy between two segments of a polymer chain | |
Parameter of the damage rate function | |
Distribution function of the end-to-end vector in the stress-free and in the current state, respectively | |
Unidimensional stretch measure | |
Failure rate related to the chains with end-to-end vector | |
Chain Configuration Density Function (CCDF) | |
Total CCDF rate, CCDF rate due to deformation, viscous effects and failure, respectively | |
Deformation energy for a single chain | |
Network’s deformation energy per unit volume in the stress-free and in the current configuration, respectively | |
Chauchy stress |
References
- Lodge, T.P.; Muthukumar, M. Physical chemistry of polymers: Entropy, interactions, and dynamics. J. Phys. Chem. 1996, 100, 13275–13292. [Google Scholar] [CrossRef]
- Guth, E.; Mark, H. Zur innermolekularen, statistik, insbesondere bei kettenmolekiileni. Mon. für Chem. verwandte Teile And. Wiss. 1934, 65, 93–121. [Google Scholar] [CrossRef]
- Coombes, A.G.A.; Verderio, E.; Shaw, B.; Li, X.; Griffin, M.; Downes, S. Biocomposites of non-crosslinked natural and synthetic polymers. Biomaterials 2002, 23, 2113–2118. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Jr. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Flory, P.J. Statistical Mechanics of Chain Molecules; Wiley-Interscience: New York, NY, USA, 1969; ISBN-10: 0470264950. [Google Scholar]
- Flory, P.J. Statistical thermodynamics of random networks. Proc. R. Soc. Lond. A 1976, 351, 351–380. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Leger, L. Dynamics of entangled polymer chains. Annu. Rev. Phys. Chem. 1982, 33, 49–61. [Google Scholar]
- Kuhn, W.; Grun, F. Statistical behavior of the single chain molecule and its relation to the statistical behavior of assemblies consisting of many chain molecules. J. Polym. Sci. 1946, 1, 183–199. [Google Scholar] [CrossRef]
- Yunwei Mao, Y.; Talamini, B.; Anand, L. Rupture of polymers by chain scission. Extrem. Mech. Lett. 2017, 13, 17–24. [Google Scholar]
- Corte, L.; Leibler, L. A model for toughening of semicrystalline polymers. Macromolecules 2007, 40, 5606–5611. [Google Scholar]
- Vernerey, F.J.; Long, R.; Brighenti, R. A statistically-based continuum theory for polymers with transient networks. J. Mech. Phys. Sol. 2017, 107, 1–20. [Google Scholar] [CrossRef]
- Brighenti, R.; Menzel, A.; Vernerey, F.J. A physics-based micromechanical model for electroactive viscoelastic polymers. J. Intell. Mater. Syst. Struct. 2018, 29, 2902–2918. [Google Scholar] [CrossRef]
- Bigg, D.M. Mechanical properties of particulate filled polymers. Polym. Compos. 1987, 8, 115–122. [Google Scholar] [CrossRef]
- Gent, A.N.; Park, B. Failure processes in elastomers at or near a rigid spherical inclusion. J. Mater. Sci. 1984, 19, 1947–1956. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Pallon, L.K.; Pourrahimi, A.M.; Zhang, P.; Diaz, A.; Holler, M.; Schneider, K.; Olsson, R.T.; Hendenqvist, M.S.; Gedde, U.W. Cavitation in strained polyethylene/aluminium oxide nanocomposites. Eur. Polym. J. 2017, 87, 255–265. [Google Scholar] [CrossRef]
- Liu, D.; Hoang, A.T.; Pourrahimi, A.M.; Pallon, L.H.; Nilsson, F.; Gubanski, S.M.; Olsson, R.T.; Hendenqvist, M.S.; Gedde, U.W. Influence of nanoparticle surface coating on electrical conductivity of LDPE/Al2O3 nanocomposites for HVDC cable insulations. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1396–1404. [Google Scholar] [CrossRef]
- Wineman, A.S.; Rajagopal, K.R. Mechanical Response of Polymers: An Introduction; Cambridge University Press: Cambridge, UK, 2000; ISBN 10: 0521644097. [Google Scholar]
- Leonov, A.I. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 1976, 15, 85–98. [Google Scholar] [CrossRef]
- Landel, R.F.; Nielsen, L.E. Mechanical Properties of Polymers and Composites; CRC Press: New York, NY, USA, 1993. [Google Scholar]
- Flory, P.J.; Erman, B. Theory of elasticity of polymer networks. 3. Macromolecules 1982, 15, 800–806. [Google Scholar] [CrossRef]
- Treloar, L. The Physics of Rubber Elasticity; Oxford University Press: Oxford, UK, 1975; ISBN-10: 0198570279. [Google Scholar]
- Parada, G.A.; Zhao, X. Ideal reversible polymer networks. Soft Matter 2018, 14, 5186–5196. [Google Scholar] [CrossRef]
- Kloxin, C.J.; Bowman, C.N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 2013, 42, 7161–7173. [Google Scholar] [CrossRef]
- Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Progr. Polym. Sci. 2009, 34, 581–604. [Google Scholar] [CrossRef]
- Wojtecki, R.J.; Meador, M.A.; Rowan, S.J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10, 14–27. [Google Scholar] [CrossRef]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1986; ISBN-10: 9780198520337. [Google Scholar]
- Boyce, M.; Arruda, E. Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 2000, 73, 504–523. [Google Scholar] [CrossRef]
- Wang, M.; Guth, E. Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 1952, 20, 1144–1157. [Google Scholar] [CrossRef]
- Arruda, E.; Boyce, M. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Sol. 1993, 41, 389–412. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Van Der Giessen, E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Sol. 1993, 41, 427–456. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Terentjev, E.M. Fluidization of transient filament networks. Macromolecules 2018, 51, 4660–4669. [Google Scholar] [CrossRef]
- Long, K.N. The mechanics of network polymers with thermally reversible linkages. J. Mech. Phys. Sol. 2014, 63, 386–411. [Google Scholar] [CrossRef] [Green Version]
- Lalitha Sridhar, S.; Vernerey, F.J. The chain distribution tensor: Linking nonlinear rheology and chain anisotropy in transient polymers. Polymers 2018, 10, 848. [Google Scholar] [CrossRef]
- Hänggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 1990, 62, 251. [Google Scholar] [CrossRef]
- Ghatak, A.; Vorvolakos, K.; She, H.; Malotky, D.; Chaundhury, M. Interfacial rate processes in adhesion and friction. J. Phys. Chem. B 2000, 104, 4018–4030. [Google Scholar] [CrossRef]
- Lavoie, S.; Long, R.; Tang, T. A rate-dependent damage model for elastomers at large strain. Extr. Mech. Lett. 2016, 8, 114–124. [Google Scholar] [CrossRef]
- Talamini, B.; Mao, Y.; Anand, L. Progressive damage and rupture in polymers. J. Mech. Phys. Sol. 2018, 111, 434–457. [Google Scholar] [CrossRef] [Green Version]
- Vernerey, F.J.; Brighenti, R.; Long, R.; Shen, T. Statistical damage mechanics of polymer networks. Macromolecules 2018, 51, 6609–6622. [Google Scholar] [CrossRef]
- Hui, C.; Tang, T.; Lin, Y.; Chaudhury, M. Failure of elastomeric polymers due to rate dependent bond rupture. Langmuir 2004, 20, 6052–6064. [Google Scholar] [CrossRef]
- Brighenti, R.; Artoni, F.; Cosma, M.P. Mechanics of materials with embedded unstable molecules. J. Sol. Struct. 2019, 162, 21–35. [Google Scholar] [CrossRef]
- Higgs, P.G.; Ball, R.C. Polydisperse polymer networks: Elasticity, orientational properties, and small angle neutron scattering. J. Phys. 1988, 49, 1785–1811. [Google Scholar] [CrossRef]
- Marrucci, G. Relaxation by reptation and tube enlargement: A model for polydisperse polymers. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 159–177. [Google Scholar] [CrossRef]
- Gong, J.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Gong, J.P. Why are double network hydrogels so tough? Soft Matter 2010, 6, 2583–2590. [Google Scholar] [CrossRef]
- Verron, E.; Gros, A. An equal force theory for network models of soft materials with arbitrary molecular weight distribution. J. Mech. Phys. Sol. 2017, 106, 176–190. [Google Scholar] [CrossRef]
- Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R.P.; Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 2014, 344, 186–189. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brighenti, R.; Artoni, F.; Cosma, M.P. Viscous and Failure Mechanisms in Polymer Networks: A Theoretical Micromechanical Approach. Materials 2019, 12, 1576. https://doi.org/10.3390/ma12101576
Brighenti R, Artoni F, Cosma MP. Viscous and Failure Mechanisms in Polymer Networks: A Theoretical Micromechanical Approach. Materials. 2019; 12(10):1576. https://doi.org/10.3390/ma12101576
Chicago/Turabian StyleBrighenti, Roberto, Federico Artoni, and Mattia Pancrazio Cosma. 2019. "Viscous and Failure Mechanisms in Polymer Networks: A Theoretical Micromechanical Approach" Materials 12, no. 10: 1576. https://doi.org/10.3390/ma12101576
APA StyleBrighenti, R., Artoni, F., & Cosma, M. P. (2019). Viscous and Failure Mechanisms in Polymer Networks: A Theoretical Micromechanical Approach. Materials, 12(10), 1576. https://doi.org/10.3390/ma12101576