Photocatalytic Degradation of Diclofenac by Hydroxyapatite–TiO2 Composite Material: Identification of Transformation Products and Assessment of Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis and Characterisation of HApTi
2.3. Bench-Scale Experiments
2.4. Analytical Setup and Data Processing
- -
- Suspect screening: The AB-Sciex software, i.e., SciexOS 1.2, PeakView 2.2, MasterView 1.1, and LibraryView 1.1.0, were employed by using a list of likely TPs collected from the literature or from prediction models. The samples were screened for those candidates on the basis of the mass exact, isotopic pattern, fragmentation MS/MS patter, and chromatographic retention time. However, since no reference standards are available for all revealed TPs, the subsequent confirmation of the analytes is not completely possible. Therefore, the molecular formula and structure of suspected molecules can be only predicted.
- -
- Nontarget screening: An open source software, i.e., enviMass 3.5 [40], was used for the investigation of compounds for which no previous knowledge is available and which is usually carried out after suspect screening. Briefly, after a first step of peak picking, the following steps include the removal of peaks found also in the blank sample, the mass recalibration, and the componentization of isotopes and adducts.
2.5. Toxicity Test
3. Results and Discussion
3.1. Identification of the Transformation Products Produced by DCF Photodegradation
3.2. DCF Degradation: Photolysis versus Photocatalysis with HApTi
3.3. Evaluation of Toxicity of the Treated Water
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Ground. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Peake, B.M.; Braund, R.; Tong, A.; Tremblay, L.A. Degradation of pharmaceuticals in wastewater. In The Life-Cycle of Pharmaceuticals in the Environment; Elsevier: New York, NY, USA, 2016. [Google Scholar]
- Fatta-Kassinos, D.; Vasquez, M.I.; Kümmerer, K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 2011, 85, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Cheng, J.-Y.; Lin, X.-Q. Systematic screening and identification of the chlorinated transformation products of aromatic pharmaceuticals and personal care products using high-resolution mass spectrometry. Sci. Total Environ. 2018, 637–638, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends Analy. Chem. 2015, 66, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, L.; Pan, B.; Wang, C.; Bao, S.; Nie, X. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. Aquat. Toxicol. 2017, 183, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Välitalo, P.; Massei, R.; Heiskanen, I.; Behnisch, P.; Brack, W.; Tindall, A.J.; Du Pasquier, D.; Küster, E.; Mikola, A.; Schulze, T.; et al. Effect-based assessment of toxicity removal during wastewater treatment. Water Res. 2017, 126, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Van den Brandhof, E.-J.; Montforts, M. Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol. Environ. Saf. 2010, 73, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Schröder, P.; Helmreich, B.; Škrbić, B.; Carballa, M.; Papa, M.; Pastore, C.; Emre, Z.; Oehmen, A.; Langenhoff, A.; Molinos, M.; et al. Status of hormones and painkillers in wastewater effluents across several European states—Considerations for the EU watch list concerning estradiols and diclofenac. Environ. Sci. Pollut. Res. 2016, 23, 12835–12866. [Google Scholar] [CrossRef] [PubMed]
- Hug, C.; Ulrich, N.; Schulze, T.; Brack, W.; Krauss, M. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ. Pollut. 2014, 184, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Bouju, H.; Nastold, P.; Beck, B.; Hollender, J.; Corvini, P.F.X.; Wintgens, T. Elucidation of biotransformation of diclofenac and 4′hydroxydiclofenac during biological wastewater treatment. J. Hazard. Mater. 2016, 301, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plant—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.; Pereira, V.J.; Carvalho, G.; Soeiro, R.; Gaffney, V.; Almeida, C.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Ternes, T.A.; et al. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J. Hazard. Mater. 2013, 244–245, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Acuña, V.; Ginebreda, A.; Mor, J.R.; Petrovic, M.; Sabater, S.; Sumpter, J.; Barceló, D. Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example. Environ. Int. 2015, 85, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Del Moro, G.; Mancini, A.; Mascolo, G.; Di Iaconi, C. Comparison of UV/H2O2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates. Chem. Eng. J. 2013, 218, 133–137. [Google Scholar] [CrossRef]
- Pagano, M.; Lopez, A.; Volpe, A.; Mascolo, G.; Ciannarella, R. Oxidation of nonionic surfactants by Fenton and H2O2/UV processes. Environ. Technol. 2008, 29, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for Advanced Oxidation Processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Shaham-Waldmann, N.; Paz, Y. Away from TiO2: A critical minireview on the developing of new photocatalysts for degradation of contaminants in water. Mater. Sci. Semicond. Process. 2016, 42, 72–80. [Google Scholar] [CrossRef]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng. 2016, 4, 1929–1937. [Google Scholar] [CrossRef]
- Murgolo, S.; Yargeau, V.; Gerbasi, R.; Visentin, F.; El Habra, N.; Ricco, G.; Lacchetti, I.; Carere, M.; Curri, M.L.; Mascolo, G. A new supported TiO2 film deposited on stainless steel for the photocatalytic degradation of contaminants of emerging concern. Chem. Eng. J. 2017, 318, 103–111. [Google Scholar] [CrossRef]
- Murgolo, S.; Petronella, F.; Ciannarella, R.; Comparelli, R.; Agostiano, A.; Curri, M.L.; Mascolo, G. UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catal. Today 2015, 240, 114–124. [Google Scholar] [CrossRef]
- Comparelli, R.; Cozzoli, P.D.; Curri, M.L.; Agostiano, A.; Mascolo, G.; Lovecchio, G. Photocatalytic degradation of methyl-red by immobilised nanoparticles of TiO2 and ZnO. Water Sci. Technol. 2004, 49, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, C.L.; Castro, P.M. Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives. J. Environ. Manag. 2017, 193, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, C.D.C.W.; Pullar, R.C.; Tobaldi, D.M.; Labrincha, J.A.; Parkin, I.P.; Pintado, M.M.; Castro, P.M.L. Calcium phosphate-based materials of natural origin showing photocatlytic activity. J. Mater. Chem. A 2013, 1, 6452–6461. [Google Scholar] [CrossRef]
- Márquez Brazón, E.; Piccirillo, C.; Moreira, I.S.; Castro, P.M.L. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. J. Environ. Manag. 2016, 182, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Poirier-Larabie, S.; Segura, P.A.; Gagnon, C. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions. Sci. Total Environ. 2016, 557–558, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Deeb, A.A.; Stephan, S.; Schmitz, O.J.; Schmidt, T.C. Suspect screening of micropollutants and their transformation products in advanced wastewater treatment. Sci. Total Environ. 2017, 601–602, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Hoffmann, H.; Garbe, L.-A.; Schneider, R.J. Liquid chromatography–tandem mass spectrometry detection of diclofenac and related compounds in water samples. J. Chromatogr. A 2018, 1538, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Detomaso, A.; Mascolo, G.; Lopez, A. Characterization of carbofuran photodegradation by-products by liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, C.; Pinto, R.A.; Tobaldi, D.M.; Pullar, R.C.; Labrincha, J.A.; Pintado, M.M.E.; Castro, P.M.L. Light induced antibacterial activity and photocatalytic properties of Ag/Ag3PO4 -based material of marine origin. J. Photochem. Photobiol. A Chem. 2015, 296, 40–47. [Google Scholar] [CrossRef]
- Bessa, V.S.; Moreira, I.S.; Tiritan, M.E.; Castro, P.M.L. Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge. Int. Biodeterior. Biodegr. 2017, 120, 135–142. [Google Scholar] [CrossRef]
- Ribeiro, A.R.G.V.M.F.; Maia, A.S.; Carvalho, M.F.; Castro, P.M.L.; Tiritan, M.E. Microbial degradation of pharmaceuticals followed by a simple HPLC-DAD method. J. Environ. Sci. Health 2012, 47, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Loos, M. enviMass version 3.5 LC-HRMS trend detection workflow—R package. Zenodo 2018. [Google Scholar] [CrossRef]
- OECD. Daphnia acute Immobilisation Test and Reproduction Test. OECD Guidel. Test. Chem. 1984, 202, 1–16. [Google Scholar]
- ISO. Water Quality: Determination of the Inhibition Mobility of Daphnia Magna STRAUS (Cladocera, Crustacea)—Acute Toxicity Test; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- OECD Guidelines for the Testing of Chemicals 2006. In Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test; Organisation for Economic Co-Operation and Development: Paris, France, 2006.
- Moreira, I.S.; Bessa, V.S.; Murgolo, S.; Piccirillo, C.; Mascolo, G.; Castro, P.M.L. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11. Ecotoxicol. Environ. Saf. 2018, 152, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Canle, L.M.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B Environ. 2011, 107, 110–118. [Google Scholar] [CrossRef]
- Agüera, A.P.E.L.A.; Ferrer, I.; Thurman, E.M.; Malato, S.; Fernàndez-Alba, A.R. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005, 40, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Calza, P.; Sakkas, V.A.; Medana, C.; Baiocchi, C.; Dimou, A.; Pelizzetti, E.; Albanis, T. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B Environ. 2006, 67, 197–205. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Tobaldi, D.M.; Karmaoui, M. Engineering highly effective and stable nanocomposite photocatalyst based on NH2-MIL-125 encirclement with Ag3PO4 nanoparticles. J. Photochem. Photobiol. A Chem. 2018, 351, 50–58. [Google Scholar] [CrossRef]
- Singh, N.; Chakraborty, R.; Gupta, R.K. Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications. J. Environ. Chem. Eng. 2018, 6, 459–467. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Baeissa, E.S. Preparation and characterisation of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light. Appl. Catal. A Gen. 2013, 464–465, 218–224. [Google Scholar] [CrossRef]
Compounds | Ionization Mode | Calculated m/z | Measured m/z | ppm Error | Products MS/MS | Predicted Formula | Ref. |
---|---|---|---|---|---|---|---|
Photo TP-1 | ESI (+) | 278.0579 | 278.0577 | −0.6 | 168.0794, 196.0755, 232.0508, 260.0470 | C14H12ClNO3 | [44] |
Photo TP-2 | ESI (+) | 312.0189 | 312.0186 | −1.0 | 166.0643, 194.0612, 230.0357, 265.9974 | C14H11Cl2NO3 | [44,47] |
Photo TP-3 | ESI (+) | 310.0032 | 310.0031 | −0.4 | 166.0657, 201.0345, 263.9987, 291.9941 | C14H9Cl2NO3 | [44,47] |
Photo TP-4 | ESI (−) | 323.9836 | 323.9835 | −0.3 | 152.0507, 208.0423, 252.0300, 280.0045 | C14H9Cl2NO4 | [15] |
Photo TP-5 | ESI (+) | 282.0083 | 282.0084 | 0.4 | 166.0646, 194.0598, 229.0285, 263.9979 | C13H9Cl2NO2 | - |
Photo TP-6 | ESI (−) | 266.0145 | 266.0147 | 0.8 | 127.0543, 166.0662, 184.0961, 206.0185 | C13H11Cl2NO | [44,45] |
Photo TP-7 | ESI (+) | 276.0422 | 276.0420 | −0.8 | 166.0650, 194.0597, 202.0424, 230.0360 | C14H10ClNO3 | - |
Photo TP-8 | ESI (−) | 246.0327 | 246.0329 | 0.7 | 141.0214, 164.0516, 200.0265, 228.0234 | C13H10ClNO2 | - |
Photo TP-9 | ESI (−) | 230.0378 | 230.0378 | −0.1 | 143.113, 166.0646, 194.0606, 215.0134 | C13H10ClNO | - |
Photo TP-10 | ESI (+) | 260.0473 | 260.0468 | −1.8 | 125.0442, 151.0545, 165.0902, 179.0732 | C14H10ClNO2 | [33,45] |
Photo TP-11 | ESI (−) | 214.0430 | 214.0431 | 1.1 | 65.9613, 138.0405, 142.9975, 178.0652 | C13H10ClN | [45] |
Photo TP-12 | ESI (−) | 240.0666 | 240.0667 | 0.3 | 99.9485, 142.0667, 168.0815, 196.0768 | C14H11NO3 | [33,45,46] |
Photo TP-13 | ESI (+) | 256.0604 | 256.0604 | −0.1 | 95.0885, 127.0543, 182.0595, 210.0552 | C14H9NO4 | [15] |
Photo TP-14 | ESI (−) | 196.0768 | 196.0768 | 0.2 | 59.0159, 135.0128, 152.0321, 168.0804 | C13H11NO | [45] |
Compounds | Measured m/z | Retention Time (min) | MS Error (ppm) | Predicted Formula | Formula Finder Score | Profile as Function of Time |
---|---|---|---|---|---|---|
Ion-1 | 230.2471 | 13.37 | 1 | C14H31NO | 39.7 | Increase |
Ion-2 | 258.2789 | 14.18 | −1 | C16H35NO | 40 | Increase |
Ion-3 | 352.3052 | 13.66 | 0.2 | C14H37N7O3 | 18.1 | Increase |
Ion-4 | 379.3046 | 13.67 | 0 | C21H38N4O2 | 43.1 | Increase |
Ion-5 | 383.2867 | 13.67 | 0.1 | C17H34N8O2 | 73.7 | Increase |
Ion-6 | 396.3316 | 13.67 | −0.8 | C16H41N7O4 | 25.4 | Increase |
Ion-7 | 427.3124 | 13.66 | 0.4 | C19H38N8O3 | 67.8 | Increase |
Ion-8 | 440.3575 | 13.67 | −0.7 | C23H45N5O3 | 23.2 | Increase |
Ion-9 | 449.3258 | 13.66 | −0.4 | C23H40N6O3 | 26.3 | Increase |
Ion-10 | 459.4875 | 13.38 | 0.2 | No formula found | 0 | Increase |
Ion-11 | 471.3387 | 13.65 | −0.1 | C21H42N8O4 | 33.8 | Increase |
Ion-12 | 484.3839 | 13.68 | -1 | C25H49N5O4 | 25.6 | Increase |
Ion-13 | 493.352 | 13.65 | −0.6 | C22H48N6O4S | 72.9 | Increase |
Ion-14 | 537.3772 | 13.64 | 0.7 | C20H48N12O3S | 40.5 | Increase |
Ion-15 | 559.3899 | 13.64 | 1 | C21H46N14O4 | 45.3 | Increase |
Ion-16 | 572.4355 | 13.68 | −0.2 | C26H49N15 | 37.8 | Increase |
Ion-17 | 577.3903 | 13.69 | 0.5 | C38H48N4O | 91.8 | Increase |
Ion-18 | 581.4031 | 13.63 | 0.7 | C25H48N12O4 | 14.9 | Increase |
Ion-19 | 621.4163 | 13.68 | 0.3 | C30H48N14O | 30.6 | Increase |
Ion-20 | 704.5142 | 13.67 | −0.6 | No formula found | 0 | Increase |
Ion-21 | 748.5391 | 13.67 | 0.1 | No formula found | 0 | Increase |
Ion-22 | 792.5668 | 13.66 | −0.4 | No formula found | 0 | Increase |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgolo, S.; Moreira, I.S.; Piccirillo, C.; Castro, P.M.L.; Ventrella, G.; Cocozza, C.; Mascolo, G. Photocatalytic Degradation of Diclofenac by Hydroxyapatite–TiO2 Composite Material: Identification of Transformation Products and Assessment of Toxicity. Materials 2018, 11, 1779. https://doi.org/10.3390/ma11091779
Murgolo S, Moreira IS, Piccirillo C, Castro PML, Ventrella G, Cocozza C, Mascolo G. Photocatalytic Degradation of Diclofenac by Hydroxyapatite–TiO2 Composite Material: Identification of Transformation Products and Assessment of Toxicity. Materials. 2018; 11(9):1779. https://doi.org/10.3390/ma11091779
Chicago/Turabian StyleMurgolo, Sapia, Irina S. Moreira, Clara Piccirillo, Paula M. L. Castro, Gianrocco Ventrella, Claudio Cocozza, and Giuseppe Mascolo. 2018. "Photocatalytic Degradation of Diclofenac by Hydroxyapatite–TiO2 Composite Material: Identification of Transformation Products and Assessment of Toxicity" Materials 11, no. 9: 1779. https://doi.org/10.3390/ma11091779
APA StyleMurgolo, S., Moreira, I. S., Piccirillo, C., Castro, P. M. L., Ventrella, G., Cocozza, C., & Mascolo, G. (2018). Photocatalytic Degradation of Diclofenac by Hydroxyapatite–TiO2 Composite Material: Identification of Transformation Products and Assessment of Toxicity. Materials, 11(9), 1779. https://doi.org/10.3390/ma11091779