Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yacob, Z.; Liebscher, J. 1,2,3-Triazolium Salts as a Versatile New Class of Ionic Liquids. In Ionic Liquids–Classes and Properties; Handy, S.T., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [Green Version]
- Riduan, S.N.; Zhang, Y. Imidazolium salts and their polymeric materials for biological applications. Chem. Soc. Rev. 2013, 42, 9055–9070. [Google Scholar] [CrossRef] [PubMed]
- Aizpurua, J.M.; Fratila, R.M.; Monasterio, Z.; Pérez-Esnaola, N.; Andreieff, E.; Irastorza, A.; Sagartzazu-Aizpurua, M. Triazolium cations: From the “click” pool to multipurpose applications. New J. Chem. 2014, 38, 474–480. [Google Scholar] [CrossRef]
- Obadia, M.M.; Drockenmuller, E. Poly(1,2,3-triazolium)s: A new class of functional polymer electrolytes. Chem. Commun. 2016, 52, 2433–2450. [Google Scholar] [CrossRef] [PubMed]
- Schulze, B.; Schubert, U.S. Beyond Click Chemistry–Supramolecular Interactions of 1,2,3-Triazoles. Chem. Soc. Rev. 2014, 43, 2522–2571. [Google Scholar] [CrossRef] [PubMed]
- Mirjafari, A. Ionic liquid syntheses via click chemistry: Expeditious routes toward versatile functional materials. Chem. Commun. 2018, 54, 2944–2961. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Ryu, J.-S. Synthesis of 1,3-Dialkyl-1,2,3-triazolium Ionic Liquids and Their Applications to the Baylis−Hillman Reaction. J. Org. Chem. 2010, 75, 4183–4191. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Chen, C.-Y.; Cheng, H.-T.; Chu, Y.-H. Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides. Molecules 2016, 21, 1355. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Li, Q.; Dong, F.; Zhang, J.; Luan, F.; Wei, L.; Chen, Y.; Guo, Z. Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property. Carbohydr. Polym. 2018, 182, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Cuervo-Rodríguez, A.M.-B.R.; López-Fabal, F.; Gómez-Garcés, J.L.; Fernández-García, M. Antimicrobial Porous Surfaces Prepared by Breath Figures Approach. Materials 2018, 11, 1266. [Google Scholar]
- Coutrot, F. A Focus on Triazolium as a Multipurpose Molecular Station for pH-Sensitive Interlocked Crown-Ether-Based Molecular Machines. Chem. Open 2015, 4, 556–576. [Google Scholar] [Green Version]
- Clavel, C.; Fournel-Marotte, K.; Coutrot, F. A pH-Sensitive Peptide-Containing Lasso Molecular Switch. Molecules 2013, 18, 11553–11575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayal, A.; Pandey, P.S. Bile acid-based triazole and triazolium receptors for colorimetric sensing of anions. Tetrahedron 2015, 71, 6991–6996. [Google Scholar] [CrossRef]
- Steiner, I.; Stojanovic, N.; Bolje, A.; Brozovic, A.; Polancec, D.; Ambriovic-Ristov, A.; Stojkovic, M.R.; Piantanida, I.; Eljuga, D.; Kosmrlj, J.; et al. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol. Oncol. 2016, 50, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, K.F.; Petronilho, A.; Albrecht, M. Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: Synthesis, properties, and application in catalysis and beyond. Chem. Commun. 2013, 49, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Hettmanczyk, L.; Schmid, B.; Hohloch, S.; Sarkar, B. Palladium(II)-Acetylacetonato Complexes with Mesoionic Carbenes: Synthesis, Structures and Their Application in the Suzuki-Miyaura Cross Coupling Reaction. Molecules 2016, 21, 1561. [Google Scholar] [CrossRef] [PubMed]
- Sanghi, S.; Willett, E.; Versek, C.; Tuominen, M.; Coughlin, E.B. Physicochemical properties of 1,2,3-triazolium ionic liquids. RSC Adv. 2012, 2, 848–853. [Google Scholar] [CrossRef]
- M’sahel, M.; Obadia, M.M.; Medimagh, R.; Serghei, A.; Zina, M.S.; Drockenmuller, E. Biosourced 1,2,3-triazolium ionic liquids derived from isosorbide. New J. Chem. 2016, 40, 740–747. [Google Scholar] [CrossRef]
- Stappert, K.; Ünal, D.; Mallicka, B.; Mudring, A.-V. New triazolium based ionic liquid crystals. J. Mater. Chem. C 2014, 2, 7976–7986. [Google Scholar] [CrossRef]
- Martini, M.; Hegger, P.S.; Schädel, N.; Minsky, B.B.; Kirchhof, M.; Scholl, S.; Southan, A.; Tovar, G.E.M.; Boehm, H.; Laschat, S. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels. Materials 2016, 9, 810. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, H.; Tsuzuk, S.; Susan, M.A.B.H.; Hayamizu, K.; Watanabe, M. How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. J. Phys. Chem. B 2006, 110, 19593–19600. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.R.; Forsyth, M.; Izgorodina, E.I.; Abbott, A.P.; Annata, G.; Frasera, K. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 4962–4967. [Google Scholar] [CrossRef] [PubMed]
- Gouverneur, M.; Kopp, J.; van Wüllen, L.; Schönhoff, M. Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR. Phys. Chem. Chem. Phys. 2015, 17, 30680–30686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollóczki, O.; Malberg, F.; Welton, T.; Kirchner, B. On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. Phys. Chem. Chem. Phys. 2014, 16, 16880–16890. [Google Scholar] [CrossRef] [PubMed]
- Lartey, M.; Meyer-Ilse, J.; Watkins, J.D.; Roth, E.A.; Bowser, S.; Kusuma, V.A.; Damodaran, K.; Zhou, X.; Haranczyk, M.; Albenze, E.; et al. Branched isomeric 1,2,3-triazolium-based ionic liquids: New insight into structure–property relationships. Phys. Chem. Chem. Phys. 2015, 17, 29834–29843. [Google Scholar] [CrossRef] [PubMed]
- Reeder, Z.K.; Adler, A.M.; Miller, K.M. 1-Alkyl-3-methyl-1,2,3-triazolium [NTf2] ionic liquids: Synthesis and properties. Tetrahedron Lett. 2016, 57, 206–209. [Google Scholar] [CrossRef]
- Watkins, J.D.; Roth, E.A.; Lartey, M.; Albenze, E.; Zhong, M.; Luebke, D.R.; Nulwala, H.B. Ionic liquid regioisomers: Structure effect on the thermal and physical properties. New J. Chem. 2015, 39, 1563–1566. [Google Scholar] [CrossRef]
- Singh, D.; Gardas, R.L. Influence of Cation Size on the Ionicity, Fluidity, and Physiochemical Properties of 1,2,4-Triazolium Based Ionic Liquids. J. Phys. Chem. B 2016, 120, 4834–4842. [Google Scholar] [CrossRef] [PubMed]
- Begtrup, M.; Kristensen, P.A. Reactions between Azolium Salts and Nucleophilic Reagents I. Bromo-1,2,3-triazolium Salts as Brominating Reagents. Acta Chem. Scand. 1969, 23, 2733–2740. [Google Scholar] [CrossRef]
- Benson, F.R.; Savell, W.L. The Chemistry of the Vicinal Triazoles. Chem. Rev. 1950, 46, 1–68. [Google Scholar] [CrossRef] [PubMed]
- Dehaen, W.; Bakulev, V.A. (Eds.) Chemistry of 1,2,3-Triazoles; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Pulst, M.; Balko, J.; Golitsyn, Y.; Reichert, D.; Busse, K.; Kressler, J. Proton conductivity and phase transitions in 1,2,3-triazole. Phys. Chem. Chem. Phys. 2016, 18, 6153–6163. [Google Scholar] [CrossRef] [PubMed]
- Pulst, M.; Elgabarty, H.; Sebastiani, D.; Kressler, J. The annular tautomerism of lithium 1,2,3-triazolate. New J. Chem. 2017, 41, 1430–1435. [Google Scholar] [CrossRef]
- Riedel, E.; Janiak, C. Anorganische Chemie, 7th ed.; deGruyter: Berlin, Germany, 2007. [Google Scholar]
- Freire, M.G.; Teles, A.R.R.; Rocha, M.A.A.; Schröder, B.; Neves, C.M.S.S.; Carvalho, P.J.; Evtuguin, D.V.; Santos, L.M.N.B.F.; Coutinho, J.A.P. Thermophysical Characterization of Ionic Liquids Able to Dissolve Biomass. J. Chem. Eng. Data 2011, 56, 4813–4822. [Google Scholar] [CrossRef]
- Gardas, R.L.; Coutinho, J.A.P. Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib. 2008, 263, 26–32. [Google Scholar] [CrossRef]
- Dyre, J.C. A Simple Model of AC Hopping Conductivity in Disordered Solids. Phys. Lett. A 1985, 108, 457–461. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; Buss, H.G.; McCloskey, B.D. The Compensation Effect in the Vogel-Tammann-Fulcher (VTF) Equation for Polymer-Based Electrolytes. Macromolecules 2017, 50, 3831–3840. [Google Scholar] [CrossRef]
- Compaan, K.; Haven, Y. Correlation factors for diffusion in solids. Part 2. Indirect interstitial mechanism. Trans. Faraday Soc. 1958, 54, 1498–1508. [Google Scholar] [CrossRef]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time Dependent Field Gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef]
Triazolium Salt | Cation | Anion | V+ (Å3) | V− (Å3) | Tm (°C) | Td10 (°C) | ρ (g cm−3) |
---|---|---|---|---|---|---|---|
[DMTR][F] | 154 1 | 10 2 | --- 5 | 155 | --- | ||
[DMTR][OTf] | 154 1 | 129 3 | 49.0 | 360 | 1.467 | ||
[DMTR][NTf2] | 154 1 | 248 4 | 46.1 | 385 | 1.583 |
Ionic Liquid | Λ (S cm2 mol−1) | I | Λ∞ (S cm2 mol−1) | Ea (kJ mol−1) | T0 (K) |
---|---|---|---|---|---|
[DMTR][OTf] | 3.3 | 0.65 | 172 | 5.06 | 169 |
[DMTR][NTf2] | 3.7 | 0.76 | 264 | 5.74 | 162 |
[DMIM][NTf2] 1 | 2.5 | 0.76 | --- | --- | --- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulst, M.; Golitsyn, Y.; Reichert, D.; Kressler, J. Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions. Materials 2018, 11, 1723. https://doi.org/10.3390/ma11091723
Pulst M, Golitsyn Y, Reichert D, Kressler J. Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions. Materials. 2018; 11(9):1723. https://doi.org/10.3390/ma11091723
Chicago/Turabian StylePulst, Martin, Yury Golitsyn, Detlef Reichert, and Jörg Kressler. 2018. "Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions" Materials 11, no. 9: 1723. https://doi.org/10.3390/ma11091723
APA StylePulst, M., Golitsyn, Y., Reichert, D., & Kressler, J. (2018). Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions. Materials, 11(9), 1723. https://doi.org/10.3390/ma11091723