Enhanced Electrical Properties of Atomic Layer Deposited LaxAlyO Thin Films with Stress Relieved Preoxide Pretreatment
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ieong, M.; Narayanan, V.; Singh, D.; Topol, A.; Chan, V.; Ren, Z. Transistor scaling with novel materials. Mater. Today 2006, 9, 26–31. [Google Scholar] [CrossRef]
- He, G.; Sun, Z.Q.; Li, G.; Zhang, L.D. Review and perspective of Hf-based high-k gate dielectrics on silicon. Crit. Rev. Solid State Mater. Sci. 2012, 37, 131–157. [Google Scholar] [CrossRef]
- Robertson, J.; Wallace, R.M. High-k materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 2015, 88, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yajima, T.; Nishimura, T.; Toriumi, A. Study of Si kinetics in interfacial SiO2 scavenging in HfO2 gate stacks. Appl. Phys. Express 2015, 8, 061304. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, J.; Chen, X.B. An improved SOI p-channel LDMOS with high-k gate dielectric and dual hole-conductive paths. IEEE Electron Device Lett. 2017, 38, 1712–1715. [Google Scholar] [CrossRef]
- Mistry, K.; Allen, C.; Auth, C.; Beattie, B.; Bergstrom, D.; Bost, M.; Brazier, M.; Buehler, M.; Cappellani, A.; Chau, R.; et al. A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 247–250. [Google Scholar]
- Pelloquin, S.; Saint-Girons, G.; Baboux, N.; Albertini, D.; Hourani, W.; Penuelas, J.; Grenet, G.; Plossu, C.; Hollinger, G. LaAlO3/Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties. J. Appl. Phys. 2013, 113, 034106. [Google Scholar] [CrossRef]
- Breckenfeld, E.; Wilson, R.B.; Martin, L.W. Effect of growth induced (non)stoichiometry on the thermal conductivity, permittivity, and dielectric loss of LaAlO3 films. Appl. Phys. Lett. 2013, 103, 082901. [Google Scholar] [CrossRef]
- Couso, C.; Porti, M.; Martin-Martinez, J.; Garcia-Loureiro, A.J.; Seoane, N.; Nafria, M. Local defect density in polycrystalline high-k dielectrics cafm-based evaluation methodology and impact on MOSFET variability. IEEE Electron Device Lett. 2017, 38, 637–640. [Google Scholar] [CrossRef]
- Suzuki, M. Comprehensive study of lanthanum aluminate high-dielectric-constant gate oxides for advanced CMOS devices. Materials 2012, 5, 443–477. [Google Scholar] [CrossRef] [PubMed]
- Cerbu, F.; Madia, O.; Andreev, D.V.; Fadida, S.; Eizenberg, M.; Breuil, L.; Lisoni, J.G.; Kittl, J.A.; Strand, J.; Shluger, A.L.; et al. Intrinsic electron traps in atomic-layer deposited HfO2 insulators. Appl. Phys. Lett. 2016, 108, 222901. [Google Scholar] [CrossRef]
- Tseng, H.H.; Tobin, P.J.; Kalpat, S.; Schaeffer, J.K.; Ramón, M.E.; Fonseca, L.R.C.; Jiang, Z.X.; Hegde, R.I.; Triyoso, D.H.; Semavedam, S. Defect passivation with fluorine and interface engineering for Hf-based high-k metal gate stack device reliability and performance enhancement. IEEE Trans. Electron Device 2007, 54, 3267–3275. [Google Scholar] [CrossRef]
- Clik-Butler, Z.; Devireddy, S.P.; Tseng, H.H.; Tobin, P.; Zlotnicka, A. A low-frequency noise model for advanced gate-stack MOSFETs. Microelectron. Reliab. 2009, 49, 103–112. [Google Scholar] [CrossRef]
- Li, F.; Tseng, H.H.; Register, L.F.; Tobin, P.J.; Banerjee, S.K. Asymmetry in Gate Capacitance-Voltage (C-V) Behavior of ultrathin metal gate MOSFETs with HfO2 gate dielectrics. IEEE Trans. Electron Devices 2006, 53, 1943–1946. [Google Scholar] [CrossRef]
- Schaefer, A.; Zielasek, V.; Schmidt, T.; Sandell, A.; Schowalter, M.; Seifarth, O.; Walle, L.E.; Schulz, C.; Wollschläger, J.; Schroeder, T.; et al. Growth of praseodymium oxide on Si(111) under oxygen-deficient conditions. Phys. Rev. B 2009, 80, 045414. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition from fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Tu, H.L.; Du, J.; Wei, F.; Zhang, X.Q.; Yang, M.M.; Zhao, H.B.; Chen, D.P.; Wang, W.W. Epitaxial growth and electrical properties of ultrathin La2Hf2O7 high-k gate dielectric films. Appl. Surf. Sci. 2013, 283, 554–558. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.C.; Wallace, R.M.; Park, T.J. In-Situ XPS Study on ALD (Atomic Layer Deposition) of High-k Dielectrics La2O3 using La-formidinate and Ozone. ECS Trans. 2012, 45, 95–101. [Google Scholar] [CrossRef]
- Gao, L.G.; Yin, K.B.; Chen, L.; Guo, H.X.; Xia, Y.D.; Yin, J.; Liu, Z.G. The effect of Si surface nitridation on the interfacial structure and electrical properties of (La2O3)0.5(SiO2)0.5 high-k gate dielectric films. Appl. Surf. Sci. 2009, 256, 90–95. [Google Scholar] [CrossRef]
- Hauser, J.R.; Ahmed, K. Characterization of ultra-thin oxides using electrical C-V and I-V measurements. AIP Conf. Proc. 1998, 449, 235–239. [Google Scholar]
- Kim, H.; Woo, S.; Lee, J.; Kim, H.; Kim, Y.; Lee, H.; Jeon, H. The Effects of Annealing Ambient on the Characteristics of La2O3 Films Deposited by RPALD. J. Electrochem. Soc. 2010, 157, H479–H482. [Google Scholar] [CrossRef]
- Neamen, D.A. Semiconductor Physics and Devices, 3rd ed.; McGraw-Hill: New York, NY, USA, 2003; p. 328. [Google Scholar]
- Shekhter, P.; Chaudhuri, A.R.; Laha, A.; Yehezkel, S.; Shriki, A.; Osten, H.J.; Eizenberg, M. The influence of carbon doping on the performance of Gd2O3 as high-k gate dielectric. Appl. Phys. Lett. 2014, 105, 262901. [Google Scholar] [CrossRef]
- Kang, H.S.; Reddy, M.S.P.; Kim, D.S.; Kim, K.W.; Ha, J.B.; Lee, Y.S.; Choi, H.C.; Lee, J.H. Effect of oxygen species on the positive flat-band voltage shift in Al2O3/GaN metal-insulator-semiconductor capacitors with post-deposition annealing. J. Phys. D Appl. Phys. 2013, 46, 155101. [Google Scholar] [CrossRef]
- Daus, A.; Vogt, C.; Münzenrieder, N.; Petti, L.; Knobelspies, S.; Cantarella, G.; Luisier, M.; Salvatore, G.A.; Tröster, G. Positive charge trapping phenomenon in n-channel thin-film transistors with amorphous alumina gate insulators. J. Appl. Phys. 2016, 120, 244501. [Google Scholar] [CrossRef] [Green Version]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; p. 225. [Google Scholar]
- Nicollian, E.H.; Brews, J.R. MOS Physics and Technology; John Wiley & Sons, Inc.: New York, NY, USA, 1982; p. 223. [Google Scholar]
- Sahu, B.S.; Ahn, J.K.; Xian, C.J.; Yoon, S.G.; Srivastava, P. Experimental investigation of interfacial and electrical properties of post-deposition annealed Bi2Mg2/3Nb4/3O7 (BMN) dielectric filmson silicon. J. Phys. D Appl. Phys. 2008, 41, 135311. [Google Scholar] [CrossRef]
- Hill, W.A.; Coleman, C.C. A single-frequency approximation for interface-state density determination. Solid State Electron. 1980, 23, 987–993. [Google Scholar] [CrossRef]
- Spahr, H.; Bülow, T.; Nowak, C.; Hirschberg, F.; Reinker, J.; Hamwi, S.; Johannes, H.H.; Kowalsky, W. Impact of morphological defects on the electrical breakdown of ultra thin atomic layer deposition processed Al2O3 layers. Thin Solid Films 2013, 534, 172–176. [Google Scholar] [CrossRef]
- Jinesh, K.B.; Klootwijk, J.H.; Lamy, Y.; Wolters, R.; Tois, E.; Tuominen, M.; Roozeboom, F.; Besling, W.F.A. Enhanced electrical properties of atomic layer deposited La2O3 thin films with embedded ZrO2 nanocrystals. Appl. Phys. Lett. 2008, 93, 172904. [Google Scholar] [CrossRef]
- Ho, C.H.; Kim, S.Y.; Roy, K. Ultra-thin dielectric breakdown in devices and circuits: A brief review. Microelectron. Reliab. 2015, 55, 308–317. [Google Scholar] [CrossRef]
- Hassan, M.K.; Roy, K. Investigation of dependence between time-zero and time-dependent variability in high-k NMOS transistors. Microelectron. Reliab. 2017, 70, 22–31. [Google Scholar] [CrossRef]
- Hsieh, E.R.; Chung, S.S. The understanding on the evolution of stress-induced gate leakage in high-k dielectric metal-oxide-field-effect transistor by random-telegraph-noise measurement. Appl. Phys. Lett. 2015, 107, 243506. [Google Scholar] [CrossRef]
- Chu, C.M.; Lin, Y.C.; Lee, W.I.; Dee, C.F.; Wong, Y.Y.; Majlis, B.Y.; Salleh, M.M.; Yap, S.L.; Chang, E.Y. Reliability study of high-k La2O3/HfO2 and HfO2/La2O3 stacking layers on n-In0.53Ga0.47As metal-oxide-semiconductor capacitor. Appl. Phys. Express 2016, 9, 021203. [Google Scholar] [CrossRef]
- Okada, K.; Kurimoto, K.; Suzuki, M. Anomalous TDDB statistics of gate dielectrics caused by charging-induced dynamic stress relaxation under constant-voltage stress. IEEE Trans. Electron Devices 2016, 63, 2268–2274. [Google Scholar] [CrossRef]
Process Step | Average Thickness (nm) | 95% Confidence Interval (nm) |
---|---|---|
Pre-RCA cleaning | 2.31 | (2.211, 2.409) |
Post-RCA cleaning | 0.67 | (0.596, 0.744) |
Post-thermal oxidation | 4.04 | (3.764, 4.316) |
Post-diluted HF solution dipping | 0.65 | (0.537, 0.763) |
Sample | Cox (μF/cm2) | VFB (V) Backward | ΔVFB (V) | Not (cm−2) | Dit (eV−1 cm−2) |
---|---|---|---|---|---|
S1 | 1.18 | 0.005 | 0.131 | 9.65 × 1011 | 1.62 × 1012 |
S2 | 1.13 | 0.142 | 0.015 | 1.06 × 1011 | 4.19 × 1011 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, H.; Zhao, L.; Wang, Y. Enhanced Electrical Properties of Atomic Layer Deposited LaxAlyO Thin Films with Stress Relieved Preoxide Pretreatment. Materials 2018, 11, 1601. https://doi.org/10.3390/ma11091601
Wang X, Liu H, Zhao L, Wang Y. Enhanced Electrical Properties of Atomic Layer Deposited LaxAlyO Thin Films with Stress Relieved Preoxide Pretreatment. Materials. 2018; 11(9):1601. https://doi.org/10.3390/ma11091601
Chicago/Turabian StyleWang, Xing, Hongxia Liu, Lu Zhao, and Yongte Wang. 2018. "Enhanced Electrical Properties of Atomic Layer Deposited LaxAlyO Thin Films with Stress Relieved Preoxide Pretreatment" Materials 11, no. 9: 1601. https://doi.org/10.3390/ma11091601