Next Article in Journal
Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D Printing Polylactic Acid Vascular Stents with Negative Poisson’s Ratio Structure
Previous Article in Journal
Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Materials 2018, 11(8), 1356; https://doi.org/10.3390/ma11081356

Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites

Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
*
Authors to whom correspondence should be addressed.
Received: 15 June 2018 / Revised: 31 July 2018 / Accepted: 1 August 2018 / Published: 5 August 2018
Full-Text   |   PDF [4017 KB, uploaded 5 August 2018]   |  

Abstract

The surface morphology of nanoparticles significantly affects the final properties and interfacial characteristics of their composites. Thus, investigations on the surface morphology of the nanoparticles is essential to fabricate improved nanoparticle-reinforced composites. Fe3O4/Fe-phthalocyanine (FePc) hybrid microspheres with micro/mesoporous structures were prepared via a solvothermal process and solvent etching method. The surface morphology and compositional distribution were respectively investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to rule out that FePc monomers have been blended with Fe3O4 to form Fe3O4/FePc hybrid microspheres without serious agglomeration. The surface roughness of Fe3O4/FePc microspheres was investigated by the scanning probe microscope (SPM), and confirmed by the adsorption and desorption isotherms of N2. The effects of the various surface morphologies on the crystallization behavior of crystallizable poly(arylene ether nitrile) (c-PEN) were first employed to confirm the surface characteristics of the resulted microspheres. Results indicated that the etched Fe3O4/FePc microspheres would improve the crystallization degree of c-PEN, due to their much more micro/mesoporous structures than that of original Fe3O4/FePc. Then, Fe3O4/FePc hybrid microspheres reinforced PEN composite films were prepared and their interfacial compatibility was monitored using an SEM. Excellent thermal stability and improved mechanical properties were obtained by combining the etched Fe3O4/FePc and PEN matrix. The excellent surface properties and micro/mesoporous structures make the novel Fe3O4/FePc an excellent candidate of organic/inorganic hybrid fillers and micro/mesoporous materials. View Full-Text
Keywords: micro/mesoporous; Fe3O4/FePc hybrid microspheres; adsorption and desorption; interfacial properties; poly(arylene ether nitrile) composite micro/mesoporous; Fe3O4/FePc hybrid microspheres; adsorption and desorption; interfacial properties; poly(arylene ether nitrile) composite
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Li, K.; Ren, D.; Tang, X.; Xu, M.; Liu, X. Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites. Materials 2018, 11, 1356.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top