Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Original Fe3O4/FePc Magnetic Hybrid Microspheres
2.3. Preparation of Etched Fe3O4/FePc Hybrid Microspheres
2.4. Preparation of Crystallizable PEN Coated Fe3O4/FePc Magnetic Microspheres
2.5. Preparation of Fe3O4/FePc Reinforced PEN Magnetic Nanocomposites
2.6. Characterizations
3. Results
3.1. The Microcosmic Morphology of the Various Fe3O4/FePc
3.2. The Surface Characteristics of the Various Fe3O4/FePc
3.3. The Interfacial Characteristics and the Dielectric Properties of the Various Fe3O4/FePc/H-PEN Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wan, Y.J.; Tang, L.C.; Gong, L.X.; Yan, D.; Li, Y.B.; Wu, L.B.; Jiang, J.X.; Lai, G.Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Jin, F.; Feng, M.; Huang, X.; Long, C.; Jia, K.; Liu, X. Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films. Appl. Surf. Sci. 2015, 357, 704–711. [Google Scholar] [CrossRef]
- Song, Y.; Shen, Y.; Liu, H.Y.; Lin, Y.H.; Li, M.; Nan, C.W. Improving the dielectric constants and breakdown strength of polymer composites: Effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 2012, 22, 16491–16498. [Google Scholar] [CrossRef]
- Tang, H.; Wang, P.; Zheng, P.; Liu, X. Core-shell structured BaTiO3@polymer hybrid nanofiller for poly(arylene ether nitrile) nanocomposites with enhanced dielectric properties and high thermal stability. Compos. Sci. Technol. 2016, 123, 134–142. [Google Scholar] [CrossRef]
- Liu, S.H.; Zhai, J.W.; Wang, J.W.; Xue, S.X.; Zhang, W.Q. Enhanced Energy Storage Density in Poly(Vinylidene Fluoride) Nanocomposites by a Small Loading of Suface-Hydroxylated Ba0.6Sr0.4TiO3 Nanofibers. ACS Appl. Mater. Interfaces 2014, 6, 1533–1540. [Google Scholar]
- Zhang, X.H.; Ma, Y.H.; Zhao, C.W.; Yang, W.T. High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 2014, 305, 531–538. [Google Scholar] [CrossRef]
- Li, K.; Xu, M.; Tong, L.; Tang, X.; Liu, X. Promoted crystallization of Poly(arylene ether nitrile) reinforced with Fe3O4/FePc nano-hybrid microsphere. Mater. Today Commun. 2017, 13, 72–79. [Google Scholar] [CrossRef]
- Meng, F.; Zhao, R.; Xu, M.; Zhan, Y.; Lei, Y.; Zhong, J.; Liu, X. Fe–phthalocyanine oligomer/Fe3O4 nano-hybrid particles and their effect on the properties of polyarylene ether nitriles magnetic nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2011, 375, 245–251. [Google Scholar] [CrossRef]
- Bera, B.; Das, J.K.; Das, N. Mesoporous silica based composite membrane formation by in-situ cross-linking of phenol and formaldehyde at room temperature for enhanced CO2 separation. Microporous Mesoporous Mater. 2018, 256, 177–189. [Google Scholar] [CrossRef]
- Dou, B.; Li, J.; Hu, Q.; Ma, C.; He, C.; Li, P.; Hu, Q.; Hao, Z.; Qiao, S. Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. Microporous Mesoporous Mater. 2010, 133, 115–123. [Google Scholar] [CrossRef]
- Li, Y.; Wen, X.; Li, L.; Wang, F.; Zhao, N.; Xiao, F.K.; Wei, W.; Sun, Y.H. Synthesis of amine-modified mesoporous materials for CO2 capture by a one-pot template-free method. J. Sol-Gel Sci. Technol. 2013, 66, 353–362. [Google Scholar] [CrossRef]
- Ma, X.L.; Wang, X.X.; Song, C.S. “Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams. J. Am. Chem. Soc. 2009, 131, 5777–5783. [Google Scholar] [CrossRef] [PubMed]
- Coriolano, A.C.F.; Silva, C.G.C.; Costa, M.J.F.; Pergher, S.B.C.; Caldeira, V.P.S.; Araujo, A.S. Development of HZSM-5/AlMCM-41 hybrid micro-mesoporous material and application for pyrolysis of vacuum gasoil. Microporous Mesoporous Mater. 2013, 172, 206–212. [Google Scholar] [CrossRef]
- Sue, Y.C.; Wu, J.W.; Chung, S.E.; Kang, C.H.; Tung, K.L.; Wu, K.C.W.; Shieh, F.K. Synthesis of Hierarchical Micro/Mesoporous Structures via Solid-Aqueous Interface Growth: Zeolitic Imidazolate Framework-8 on Siliceous Mesocellular Foams for Enhanced Pervaporation of Water/Ethanol Mixtures. ACS Appl. Mater. Interfaces 2014, 6, 5192–5198. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, P.F.; Zhu, B.; Chen, S.F.; Yao, K.L.; Han, R. Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int. J. Hydrogen Energy 2015, 40, 6188–6196. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Q.; Ren, D.; Zhu, R. Fabrication of one-dimensional mesoporous α-Fe2O3 nanostructure via self-sacrificial template and its enhanced Cr(VI) adsorption capacity. Appl. Surf. Sci. 2013, 264, 255–260. [Google Scholar] [CrossRef]
- Fang, Y.M.; Hu, H.Q. An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J. Am. Chem. Soc. 2006, 128, 10636–10637. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.A.; Gao, J.S.; Xu, C.M.; Shen, B.J. Alkali-treatment of ZSM-5 zeolites with different SiO2/Al2O3 ratios and light olefin production by heavy oil cracking. Fuel Process. Technol. 2011, 92, 414–420. [Google Scholar] [CrossRef]
- Xu, M.; Meng, F.; Zhao, R.; Zhan, Y.; Lei, Y.; Liu, X. Iron phthalocyanine oligomer/Fe3O4 hybrid microspheres and their microwave absorption property. J. Magn. Magn. Mater. 2011, 323, 2174–2178. [Google Scholar] [CrossRef]
- Zou, Y.K.; Liu, X.B. Morphology, thermal and mechanical properties of glass fiber-reinforced crosslinkable poly(arylene ether nitrile). J. Appl. Polym. Sci. 2013, 129, 130–137. [Google Scholar] [CrossRef]
- Tong, L.; Jia, K.; Liu, X. Novel phthalonitrile-terminated polyarylene ether nitrile with high glass transition temperature and enhanced thermal stability. Mater. Lett. 2014, 128, 267–270. [Google Scholar] [CrossRef]
- Zhao, R.; Jia, K.; Wei, J.-J.; Pu, J.-X.; Liu, X.-B. Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater. Lett. 2010, 64, 457–459. [Google Scholar] [CrossRef]
- Dong, S.; Xu, M.; Wei, J.; Yang, X.; Liu, X. The preparation and wide frequency microwave absorbing properties of tri-substituted-bisphthalonitrile/Fe3O4 magnetic hybrid microspheres. J. Magn. Magn. Mater. 2014, 349, 15–20. [Google Scholar] [CrossRef]
- Meng, F.; Zhao, R.; Zhan, Y.; Lei, Y.; Zhong, J.; Liu, X. One-step synthesis of Fe-phthalocyanine/Fe3O4 hybrid microspheres. Mater. Lett. 2011, 65, 264–267. [Google Scholar] [CrossRef]
- Goertzen, W.K.; Kessler, M.R. Dynamic mechanical analysis of fumed silica/cyanate ester nanocomposites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 761–768. [Google Scholar] [CrossRef]
- Kim, P.; Doss, N.M.; Tillotson, J.P.; Hotchkiss, P.J.; Pan, M.J.; Marder, S.R.; Li, J.Y.; Calame, J.P.; Perry, J.W. High Energy Density Nanocomposites Based on Surface-Modified BaTiO3 and a Ferroelectric Polymer. ACS Nano 2009, 3, 2581–2592. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Pu, Z.; Chen, Z.; Huang, X.; Liu, X. Effect of nanosilica on the thermal, mechanical, and dielectric properties of polyarylene ether nitriles terminated with phthalonitrile. Polym. Compos. 2014, 35, 344–350. [Google Scholar] [CrossRef]
Samples | Neat c-PEN | c-PEN@O-Fe3O4/FePc | c-PEN@E-Fe3O4/FePc |
---|---|---|---|
Tg (°C) | 192.2 | 189.7 | 188.6 |
ΔH (J/g) | 22.16 | 6.87 | 8.90 |
T5% (°C) | 507.7 | 421.2 | 463.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Ren, D.; Tang, X.; Xu, M.; Liu, X. Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites. Materials 2018, 11, 1356. https://doi.org/10.3390/ma11081356
Li K, Ren D, Tang X, Xu M, Liu X. Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites. Materials. 2018; 11(8):1356. https://doi.org/10.3390/ma11081356
Chicago/Turabian StyleLi, Kui, Dengxun Ren, Xianzhong Tang, Mingzhen Xu, and Xiaobo Liu. 2018. "Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites" Materials 11, no. 8: 1356. https://doi.org/10.3390/ma11081356
APA StyleLi, K., Ren, D., Tang, X., Xu, M., & Liu, X. (2018). Micro/Mesoporous Fe3O4/Fe-Phthalocyanine Microspheres and Effects of Their Surface Morphology on the Crystallization and Properties of Poly(Arylene Ether Nitrile) Composites. Materials, 11(8), 1356. https://doi.org/10.3390/ma11081356