Next Article in Journal
Hybrid Top-Down/Bottom-Up Fabrication of a Highly Uniform and Organized Faceted AlN Nanorod Scaffold
Next Article in Special Issue
Hydrophilic and Hydrophobic Mesoporous Silica Derived from Rice Husk Ash as a Potential Drug Carrier
Previous Article in Journal
Reliability of Orthodontic Miniscrews: Bending and Maximum Load of Different Ti-6Al-4V Titanium and Stainless Steel Temporary Anchorage Devices (TADs)
Open AccessArticle

Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid)

Department of Materials Science and Engineering, Faculty of Engineering and Industrial Engineering, Silpakorn University, Nakhon Pathom 73000, Thailand
Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
Author to whom correspondence should be addressed.
Materials 2018, 11(7), 1139;
Received: 15 June 2018 / Revised: 30 June 2018 / Accepted: 3 July 2018 / Published: 5 July 2018
The improvement of the rate of crystallization and crystallinity of poly (l-lactic acid) (PLLA) is one of the key performance elements for PLLA to perform better at the higher temperature than its heat deflection temperature (around 60 °C). The organic nucleating agent compounds are one of the interesting choice as they can offer the clarity of products. On the other hand, the nucleated PLLA can be prepared using a low molecular weight poly (d-lactic acid) (PDLA). The aim of this work was to explore the effect of an unsaturated amide compound and PDLA as single and mixed nucleating agents used for PLLA. The crystallization rate and kinetics were investigated and compared for the synthetic unsaturated amide compound (N,N′-ethylenebis (10-undecenamide) (EBU)) and commercial hydrazide compound (tetramethylenedicarboxylic dibenzoylhydrazide (TMC-306)). PLLA samples was prepared by melt-mixing with TMC or EBU incorporated with peroxide. The influence of different nucleating agents loading on thermal properties, crystallization behaviors, and rheological properties of PLLA were explored by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The results showed that the addition of EBU or TMC 0.5 phr could pronouncedly increase the crystallinity of PLLA from 3.80% to 24.84% and 8.61%, respectively. The crystallization peak appeared at 112.3 °C in the cooling scan at the rate 7 °C/min when addition EBU and peroxide into PLLA. This indicated that EBU acted as an efficient nucleating agent for PLLA. In isothermal crystallization run at 110 °C, it was found that the overall crystallization rate of nucleated PLLA with TMC or EBU was much faster than neat PLLA. The crystallization half-time indicated that the existence of TMC or EBU could slightly decrease to 2.90 and 1.96 min, respectively compared to neat PLLA (4.60 min). Finally, a low molecular weight PDLA with different contents between 3 and 7 wt % was added in PLLA with EBU and peroxide to investigate the effect of mixed nucleating agents. The crystallization rate of the incorporation of PDLA/EBU/peroxide into PLLA was discussed with the proposed crystallization mechanism. The results revealed the stereocomplex temperature peak at 207 °C as well as normal melting temperature of PLLA. The kinetics of growth crystallization, the crystallization half-time of PLLA at 110 °C was reduced from 4.60 min to 1.96 min (when adding EBU alone) and to 2.62 min (when using mixed PDLA and EBU). View Full-Text
Keywords: poly (l-lactic acid), poly (d-lactic acid), nucleating agents; crystallization poly (l-lactic acid), poly (d-lactic acid), nucleating agents; crystallization
Show Figures

Figure 1

MDPI and ACS Style

Khwanpipat, T.; Seadan, M.; Suttiruengwong, S. Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid). Materials 2018, 11, 1139.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop