A Novel Method of Synthesizing Graphene for Electronic Device Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. SiC Thin Film Growth
2.2. SiC Sublimation by CO2 Laser Heating
2.3. Material Characterization
3. Results and Discussion
3.1. SiC Thin Film Structure
3.2. Graphene Characterization
3.3. Sheet Resistance and Morphology of SiC Thin Film and Graphene Layers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tu, R.; Liang, Y.; Zhang, C.; Li, J.; Zhang, S.; Yang, M.; Li, Q.; Goto, T.; Zhang, L.; Shi, J.; et al. Fast Synthesis of High-Quality Large-area Graphene by Laser CVD. Appl. Surf. Sci. 2018, 445, 204–210. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, M.; Shields, V.B.; Spencer, M.G. CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC. J. Cryst. Growth 2013, 366, 26–30. [Google Scholar] [CrossRef]
- Giusca, C.E.; Spencer, S.J.; Shard, A.G.; Yakimova, R.; Kazakova, O. Exploring graphene formation on the C-terminated face of SiC by structural, chemical and electrical methods. Carbon 2014, 69, 221–229. [Google Scholar] [CrossRef][Green Version]
- Ong, W.J.; Tok, E.S. Role of Si clusters in the phase transformation and formation of (6 × 6)-ring structures on 6H-SiC(0001) as a function of temperature: An STM and XPS study. Phys. Rev. B 2006, 73, 045330. [Google Scholar] [CrossRef]
- Gupta, B.; Notarianni, M.; Mishra, N.; Shafiei, M.; Iacopi, F.; Motta, N. Evolution of epitaxial graphene layers on 3C SiC/Si (111) as a function of annealing temperature in UHV. Carbon 2014, 68, 563–572. [Google Scholar] [CrossRef][Green Version]
- Heer, W.A.; Berger, C.; Wu, X.; First, F.N.; Conrad, E.H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M.L.; et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100. [Google Scholar] [CrossRef]
- Röhrl, J.; Hundhausen, M.; Emtsev, K.V.; Seyller, T.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92, 201918. [Google Scholar] [CrossRef]
- Tang, J.; Kang, C.Y.; Li, L.M.; Pan, H.B.; Yan, W.S.; Wei, S.Q.; Xu, P.S. Graphene grown on sapphire surface by using SiC buffer layer with SSMBE. Phys. Procedia 2012, 32, 880–884. [Google Scholar] [CrossRef]
- Trabelsi, A.B.G.; Ouerghi, A.; Kusmartseva, O.E.; Kusmartsev, F.V.; Oueslati, M. Raman spectroscopy of four epitaxial graphene layers: Macro-island grown on 4H-SiC substrate and an associated strain distribution. Thin Solid Films 2013, 539, 377–383. [Google Scholar] [CrossRef]
- Norimatsu, W.; Kusunoki, M. Structural features of epitaxial graphene on SiC {0001} surfaces. J. Phys. D Appl. Phys. 2014, 47, 094017. [Google Scholar] [CrossRef]
- Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and application. Mater. Today. 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Yakimova, R.; Iakimov, T.; Yazdi, G.R.; Bouhafs, C.; Eriksson, J.; Zakharov, A.; Boosalis, A.; Schubert, M.; Darakchieva, V. Morphological and electronic properties of epitaxial graphene on SiC. Phys. B Condens. Matter 2014, 439, 54–59. [Google Scholar] [CrossRef][Green Version]
- Perrone, D.; Maccioni, G.; Chiolerio, A.; Marigorta, C.M.; Naretto, M.; Pandolfi, P.; Martino, P.; Ricciardi, C.; Chiodoni, A.; Celasco, E.; et al. Study on the possibility of graphene growth on 4H-silicon carbide surfaces via laser processing. In Proceedings of the Fifth International WLT-Conference on Lasers in Manufacturing, Munich, Germany, 15–18 June 2009. [Google Scholar]
- Lee, S.; Toney, M.F.; Ko, W.; Randel, J.C.; Jung, H.J.; Munakata, K.; Lu, J.; Geballe, T.H.; Beasley, M.R.; Sinclair, R.; et al. Laser-Synthesized Epitaxial Graphene. ACS Nano 2010, 12, 7524–7530. [Google Scholar] [CrossRef] [PubMed]
- Yannopoulos, S.N.; Siokou, A.; Nasikas, N.K.; Dracopoulos, V.; Ravani, F.; Papatheodorou, G.N. CO2-Laser-Induced Growth of Epitaxial Graphene on 6H-SiC(0001). Adv. Funct. Mater. 2012, 22, 113–120. [Google Scholar] [CrossRef]
- Fraga, M.A.; Pessoa, R.S.; Maciel, H.S.; Massi, M. Recent Developments on Silicon Carbide Thin Films for Piezoresistive Sensors Applications, Silicon Carbide—Materials, Processing and Applications in Electronic Devices; Mukherjee, M., Ed.; InTech: London, UK, 2011; Available online: http://www.intechopen.com/books/silicon-carbide-materials-processing-and-applications-in-electronic-devices/recent-developments-on-silicon-carbide-thin-films-for-piezoresistive-sensors-applications (accessed on 10 May 2018).
- Fraga, M.A.; Furlan, H.; Pessoa, R.S.; Rasia, L.A.; Mateus, C.F.R. Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsyst. Technol. 2012, 18, 1027–1033. [Google Scholar] [CrossRef]
- Galvão, N.K.A.M.; Vasconcelos, G.; Santos, M.V.R.d.; Campos, T.M.B.; Pessoa, R.S.; Guerino, M.; Djouadi, M.A.; Maciel, H.S. Growth and Characterization of Graphene on Polycrystalline SiC Substrate Using Heating by CO2 Laser Beam. Mater. Res. 2016, 26, 1329–1334. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Singh, D.P.; Joanni, E.; Yadav, R.M.; Moshkalev, S.A. Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications. Coord. Chem. Rev. 2017, 342, 34–79. [Google Scholar] [CrossRef]
- Jeong, J.; Jang, K.; Lee, H.S.; Chung, G.-S.; Kim, G. Raman scattering studies of polycrystalline 3C-SiC deposited on SiO2 and AlN thin films. Phys. B Condens. Matter 2009, 404, 7–10. [Google Scholar] [CrossRef]
- Huang, S.Y.; Xu, S.; Long, J.D.; Sun, Z.; Chen, T. Plasma-reactive SiC quantum dots on polycrystalline AlN films. Phys. Plasmas 2006, 13, 023506. [Google Scholar] [CrossRef]
- Nakazawa, H.; Suemitsu, M. Low-temperature formation of an interfacial buffer layer using monomethylsilane for 3C–SiC/Si(100) heteroepitaxy. Appl. Phys. Lett. 2001, 79, 755–757. [Google Scholar] [CrossRef]
- Qian, Z.; Hui, Y.; Liu, F.; Kang, S.; Kar, S.; Rinaldi, M. Graphene–aluminum nitride NEMS resonant infrared detector. Microsyst. Nanoeng. 2016, 2, 16026. [Google Scholar] [CrossRef][Green Version]
- Giannazzo, F.; Fisichella, G.; Greco, G.; la Magna, A.; Roccaforte, F.; Pecz, B.; Yakimova, R.; Dagher, R.; Michon, A.; Cordier, Y. Graphene integration with nitride semiconductors for high power and high frequency electronics. Phys. Status Solidi A 2017, 214, 1600460. [Google Scholar] [CrossRef]
- Medeiros, H.S.; Pessoa, R.S.; Sagas, J.C.; Fraga, M.A.; Santos, L.V.; Maciel, H.S.; Massi, M.; Sobrinho, A.S.d.S.; da Costa, M.E.H.M. Effect of nitrogen content in amorphous SiCxNyOz thin films deposited by low temperature reactive magnetron co-sputtering technique. Surf. Coat. Technol. 2011, 206, 1787–1795. [Google Scholar] [CrossRef]
- Medeiros, H.S.; Pessoa, R.S.; Sagás, J.C.; Fraga, M.A.; Santos, L.V.; Maciel, H.S.; Massi, M.; Sobrinho, A.S.d.S. SixCy Thin Films Deposited at Low Temperature by DC Dual Magnetron Sputtering: Effect of Power Supplied to Si and C Cathode Targets on Film Physicochemical Properties. Mater. Sci. Forum 2012, 717, 197–201. [Google Scholar] [CrossRef]
- Belkerk, B.E.; Soussou, A.; Carette, M.; Djouadi, M.A.; Scudeller, Y. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering. Appl. Phys. Lett. 2012, 101, 151908. [Google Scholar] [CrossRef]
- Aissa, K.A.; Achour, A.; Camus, J.; le Brizoual, L.; Jouan, P.-Y.; Djouadi, M.-A. Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures. Thin Solid Films 2014, 550, 264–267. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Leal, G.; Campos, T.M.B.; Sobrinho, A.S.d.; Pessoa, R.S.; Maciel, H.S.; Massi, M. Characterization of SiC thin films deposited by HiPIMS. Mater. Res. 2014, 17, 472–476. [Google Scholar] [CrossRef][Green Version]
- Li, W.; Yuan, J.; Lin, Y.; Yao, S.; Ren, Z.; Wang, H.; Wang, M.; Bai, J. The controlled formation of hybrid structures of multi-walled carbon nanotubes on SiC plate-like particles and their synergetic effect as a filler in poly(vinylidene fluoride) based composites. Carbon 2013, 51, 355–364. [Google Scholar] [CrossRef]
- Raju, K.; Yu, H.W.; Park, J.-Y.; Yoo, D.H. Fabrication of SiCf/SiC composites by alternating current electrophoretic deposition (AC–EPD) and hot pressing. J. Eur. Ceram. Soc. 2015, 35, 503–511. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, M.H.; Kim, Y.-W. Highly Conductive p-Type Zinc blende SiC Thin Films Fabricated on Silicon Substrates by Magnetron Sputtering. J. Am. Ceram. Soc. 2015, 98, 3663–3665. [Google Scholar] [CrossRef]
- Calizo, I.; Bejenari, I.; Rahman, M.; Liu, G.; Balandinc, A.A. Ultraviolet Raman microscopy of single and multilayer grapheme. J. Appl. Phys. 2009, 106, 043509. [Google Scholar] [CrossRef]
- Cançado, L.G.; Takai, K.; Enoki, T. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163–166. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Kumar, B.; Baraket, M.; Paillet, M.; Huntzinger, J.-R.; Tiberj, A.; Jansen, A.G.M.; Vila, L.; Cubuku, M.; Vergnaud, C.; Jamet, M.; et al. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Phys. E 2016, 75, 7–14. [Google Scholar] [CrossRef]
- Escobedo-Cousin, E.; Vassilevski, K.; Hopf, T.; Wright, N.; O’Neill, A.; Horsfall, A.; Goss, J.; Cumpson, P. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. J. Appl. Phys. 2013, 113, 114309. [Google Scholar] [CrossRef]
- Hass, J.; de Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphen. J. Phys. Condens. Matter 2008, 20, 323202. [Google Scholar] [CrossRef]
- Tiberj, A.; Camara, N.; Godignon, P.; Camassel, J. Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC. Nanoscale Res. Lett. 2011, 6, 478. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jernigan, G.G.; VanMil, B.L.; Tedesco, J.L.; Tischler, J.G.; Glaser, E.R.; Davidson, A., III; Campbell, P.M.; Gaskill, D.K. Comparison of Epitaxial Graphene on Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production. Nano Lett. 2009, 9, 2605–2609. [Google Scholar] [CrossRef] [PubMed]
- Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W.A.; First, P.N.; Conrad, E.H. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106. [Google Scholar] [CrossRef][Green Version]
Condition 1 (C1) | Condition 2 (C2) | Condition 3 (C3) | |
---|---|---|---|
Scanning velocity (mm s−1) | 2300 | 2500 | 2600 |
Energy density (J cm−2) | 145.25 | 136.95 | 127.69 |
Sample | C1 | C2 | C3 | SiC 1 |
---|---|---|---|---|
Sheet resistance (Ω/□) | 30,900 | 26 | 29,320 | 60,000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvão, N.; Vasconcelos, G.; Pessoa, R.; Machado, J.; Guerino, M.; Fraga, M.; Rodrigues, B.; Camus, J.; Djouadi, A.; Maciel, H. A Novel Method of Synthesizing Graphene for Electronic Device Applications. Materials 2018, 11, 1120. https://doi.org/10.3390/ma11071120
Galvão N, Vasconcelos G, Pessoa R, Machado J, Guerino M, Fraga M, Rodrigues B, Camus J, Djouadi A, Maciel H. A Novel Method of Synthesizing Graphene for Electronic Device Applications. Materials. 2018; 11(7):1120. https://doi.org/10.3390/ma11071120
Chicago/Turabian StyleGalvão, Nierlly, Getúlio Vasconcelos, Rodrigo Pessoa, João Machado, Marciel Guerino, Mariana Fraga, Bruno Rodrigues, Julien Camus, Abdou Djouadi, and Homero Maciel. 2018. "A Novel Method of Synthesizing Graphene for Electronic Device Applications" Materials 11, no. 7: 1120. https://doi.org/10.3390/ma11071120